Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\sqrt{3}x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\sqrt{3}±\sqrt{\left(\sqrt{3}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \sqrt{3} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\sqrt{3}±\sqrt{3-4}}{2}
Square \sqrt{3}.
x=\frac{-\sqrt{3}±\sqrt{-1}}{2}
Add 3 to -4.
x=\frac{-\sqrt{3}±i}{2}
Take the square root of -1.
x=\frac{-\sqrt{3}+i}{2}
Now solve the equation x=\frac{-\sqrt{3}±i}{2} when ± is plus. Add -\sqrt{3} to i.
x=-\frac{\sqrt{3}}{2}+\frac{1}{2}i
Divide -\sqrt{3}+i by 2.
x=\frac{-\sqrt{3}-i}{2}
Now solve the equation x=\frac{-\sqrt{3}±i}{2} when ± is minus. Subtract i from -\sqrt{3}.
x=-\frac{\sqrt{3}}{2}-\frac{1}{2}i
Divide -\sqrt{3}-i by 2.
x=-\frac{\sqrt{3}}{2}+\frac{1}{2}i x=-\frac{\sqrt{3}}{2}-\frac{1}{2}i
The equation is now solved.
x^{2}+\sqrt{3}x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\sqrt{3}x+1-1=-1
Subtract 1 from both sides of the equation.
x^{2}+\sqrt{3}x=-1
Subtracting 1 from itself leaves 0.
x^{2}+\sqrt{3}x+\left(\frac{\sqrt{3}}{2}\right)^{2}=-1+\left(\frac{\sqrt{3}}{2}\right)^{2}
Divide \sqrt{3}, the coefficient of the x term, by 2 to get \frac{\sqrt{3}}{2}. Then add the square of \frac{\sqrt{3}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\sqrt{3}x+\frac{3}{4}=-1+\frac{3}{4}
Square \frac{\sqrt{3}}{2}.
x^{2}+\sqrt{3}x+\frac{3}{4}=-\frac{1}{4}
Add -1 to \frac{3}{4}.
\left(x+\frac{\sqrt{3}}{2}\right)^{2}=-\frac{1}{4}
Factor x^{2}+\sqrt{3}x+\frac{3}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{\sqrt{3}}{2}=\frac{1}{2}i x+\frac{\sqrt{3}}{2}=-\frac{1}{2}i
Simplify.
x=-\frac{\sqrt{3}}{2}+\frac{1}{2}i x=-\frac{\sqrt{3}}{2}-\frac{1}{2}i
Subtract \frac{\sqrt{3}}{2} from both sides of the equation.