Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{\sqrt{1}}{\sqrt{6}}=0
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
x^{2}+\frac{1}{\sqrt{6}}=0
Calculate the square root of 1 and get 1.
x^{2}+\frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}=0
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
x^{2}+\frac{\sqrt{6}}{6}=0
The square of \sqrt{6} is 6.
x^{2}=-\frac{\sqrt{6}}{6}
Subtract \frac{\sqrt{6}}{6} from both sides. Anything subtracted from zero gives its negation.
x=\frac{6^{\frac{3}{4}}i}{6} x=-\frac{6^{\frac{3}{4}}i}{6}
Take the square root of both sides of the equation.
x^{2}+\frac{\sqrt{1}}{\sqrt{6}}=0
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
x^{2}+\frac{1}{\sqrt{6}}=0
Calculate the square root of 1 and get 1.
x^{2}+\frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}=0
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
x^{2}+\frac{\sqrt{6}}{6}=0
The square of \sqrt{6} is 6.
6x^{2}+\sqrt{6}=0
Multiply both sides of the equation by 6.
x=\frac{0±\sqrt{0^{2}-4\times 6\sqrt{6}}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and \sqrt{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\sqrt{6}}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\sqrt{6}}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±2\times 6^{\frac{3}{4}}i}{2\times 6}
Take the square root of -24\sqrt{6}.
x=\frac{0±2\times 6^{\frac{3}{4}}i}{12}
Multiply 2 times 6.
x=\frac{6^{\frac{3}{4}}i}{6}
Now solve the equation x=\frac{0±2\times 6^{\frac{3}{4}}i}{12} when ± is plus.
x=-\frac{6^{\frac{3}{4}}i}{6}
Now solve the equation x=\frac{0±2\times 6^{\frac{3}{4}}i}{12} when ± is minus.
x=\frac{6^{\frac{3}{4}}i}{6} x=-\frac{6^{\frac{3}{4}}i}{6}
The equation is now solved.