Solve for h (complex solution)
\left\{\begin{matrix}h=2-5x-x^{2}\text{, }&x\neq -6\\h\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=2-5x-x^{2}\text{, }&x\neq -6\\h\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{\sqrt{33-4h}-5}{2}\text{; }x=0\text{, }&\text{unconditionally}\\x=\frac{-\sqrt{33-4h}-5}{2}\text{, }&h\neq -4\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{-\sqrt{33-4h}-5}{2}\text{, }&h\neq -4\text{ and }h\leq \frac{33}{4}\\x=\frac{\sqrt{33-4h}-5}{2}\text{, }&h\leq \frac{33}{4}\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x+6\right)x^{2}+hx+2x+2x=x\left(x+6\right)
Multiply both sides of the equation by x+6.
x^{3}+6x^{2}+hx+2x+2x=x\left(x+6\right)
Use the distributive property to multiply x+6 by x^{2}.
x^{3}+6x^{2}+hx+4x=x\left(x+6\right)
Combine 2x and 2x to get 4x.
x^{3}+6x^{2}+hx+4x=x^{2}+6x
Use the distributive property to multiply x by x+6.
6x^{2}+hx+4x=x^{2}+6x-x^{3}
Subtract x^{3} from both sides.
hx+4x=x^{2}+6x-x^{3}-6x^{2}
Subtract 6x^{2} from both sides.
hx+4x=-5x^{2}+6x-x^{3}
Combine x^{2} and -6x^{2} to get -5x^{2}.
hx=-5x^{2}+6x-x^{3}-4x
Subtract 4x from both sides.
hx=-5x^{2}+2x-x^{3}
Combine 6x and -4x to get 2x.
xh=2x-5x^{2}-x^{3}
The equation is in standard form.
\frac{xh}{x}=\frac{x\left(2-5x-x^{2}\right)}{x}
Divide both sides by x.
h=\frac{x\left(2-5x-x^{2}\right)}{x}
Dividing by x undoes the multiplication by x.
h=2-5x-x^{2}
Divide x\left(-5x+2-x^{2}\right) by x.
\left(x+6\right)x^{2}+hx+2x+2x=x\left(x+6\right)
Multiply both sides of the equation by x+6.
x^{3}+6x^{2}+hx+2x+2x=x\left(x+6\right)
Use the distributive property to multiply x+6 by x^{2}.
x^{3}+6x^{2}+hx+4x=x\left(x+6\right)
Combine 2x and 2x to get 4x.
x^{3}+6x^{2}+hx+4x=x^{2}+6x
Use the distributive property to multiply x by x+6.
6x^{2}+hx+4x=x^{2}+6x-x^{3}
Subtract x^{3} from both sides.
hx+4x=x^{2}+6x-x^{3}-6x^{2}
Subtract 6x^{2} from both sides.
hx+4x=-5x^{2}+6x-x^{3}
Combine x^{2} and -6x^{2} to get -5x^{2}.
hx=-5x^{2}+6x-x^{3}-4x
Subtract 4x from both sides.
hx=-5x^{2}+2x-x^{3}
Combine 6x and -4x to get 2x.
xh=2x-5x^{2}-x^{3}
The equation is in standard form.
\frac{xh}{x}=\frac{x\left(2-5x-x^{2}\right)}{x}
Divide both sides by x.
h=\frac{x\left(2-5x-x^{2}\right)}{x}
Dividing by x undoes the multiplication by x.
h=2-5x-x^{2}
Divide x\left(-5x+2-x^{2}\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}