Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{6}{5}x-\frac{209}{50}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{6}{5}±\sqrt{\left(\frac{6}{5}\right)^{2}-4\left(-\frac{209}{50}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{6}{5} for b, and -\frac{209}{50} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{6}{5}±\sqrt{\frac{36}{25}-4\left(-\frac{209}{50}\right)}}{2}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{6}{5}±\sqrt{\frac{36+418}{25}}}{2}
Multiply -4 times -\frac{209}{50}.
x=\frac{-\frac{6}{5}±\sqrt{\frac{454}{25}}}{2}
Add \frac{36}{25} to \frac{418}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{6}{5}±\frac{\sqrt{454}}{5}}{2}
Take the square root of \frac{454}{25}.
x=\frac{\sqrt{454}-6}{2\times 5}
Now solve the equation x=\frac{-\frac{6}{5}±\frac{\sqrt{454}}{5}}{2} when ± is plus. Add -\frac{6}{5} to \frac{\sqrt{454}}{5}.
x=\frac{\sqrt{454}}{10}-\frac{3}{5}
Divide \frac{-6+\sqrt{454}}{5} by 2.
x=\frac{-\sqrt{454}-6}{2\times 5}
Now solve the equation x=\frac{-\frac{6}{5}±\frac{\sqrt{454}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{454}}{5} from -\frac{6}{5}.
x=-\frac{\sqrt{454}}{10}-\frac{3}{5}
Divide \frac{-6-\sqrt{454}}{5} by 2.
x=\frac{\sqrt{454}}{10}-\frac{3}{5} x=-\frac{\sqrt{454}}{10}-\frac{3}{5}
The equation is now solved.
x^{2}+\frac{6}{5}x-\frac{209}{50}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{6}{5}x-\frac{209}{50}-\left(-\frac{209}{50}\right)=-\left(-\frac{209}{50}\right)
Add \frac{209}{50} to both sides of the equation.
x^{2}+\frac{6}{5}x=-\left(-\frac{209}{50}\right)
Subtracting -\frac{209}{50} from itself leaves 0.
x^{2}+\frac{6}{5}x=\frac{209}{50}
Subtract -\frac{209}{50} from 0.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{209}{50}+\left(\frac{3}{5}\right)^{2}
Divide \frac{6}{5}, the coefficient of the x term, by 2 to get \frac{3}{5}. Then add the square of \frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{209}{50}+\frac{9}{25}
Square \frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{227}{50}
Add \frac{209}{50} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{5}\right)^{2}=\frac{227}{50}
Factor x^{2}+\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{227}{50}}
Take the square root of both sides of the equation.
x+\frac{3}{5}=\frac{\sqrt{454}}{10} x+\frac{3}{5}=-\frac{\sqrt{454}}{10}
Simplify.
x=\frac{\sqrt{454}}{10}-\frac{3}{5} x=-\frac{\sqrt{454}}{10}-\frac{3}{5}
Subtract \frac{3}{5} from both sides of the equation.