Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{5}{6}x^{2}-\frac{4}{6}=0
Multiply x and x to get x^{2}.
\frac{11}{6}x^{2}-\frac{4}{6}=0
Combine x^{2} and \frac{5}{6}x^{2} to get \frac{11}{6}x^{2}.
\frac{11}{6}x^{2}-\frac{2}{3}=0
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{11}{6}x^{2}=\frac{2}{3}
Add \frac{2}{3} to both sides. Anything plus zero gives itself.
x^{2}=\frac{2}{3}\times \frac{6}{11}
Multiply both sides by \frac{6}{11}, the reciprocal of \frac{11}{6}.
x^{2}=\frac{4}{11}
Multiply \frac{2}{3} and \frac{6}{11} to get \frac{4}{11}.
x=\frac{2\sqrt{11}}{11} x=-\frac{2\sqrt{11}}{11}
Take the square root of both sides of the equation.
x^{2}+\frac{5}{6}x^{2}-\frac{4}{6}=0
Multiply x and x to get x^{2}.
\frac{11}{6}x^{2}-\frac{4}{6}=0
Combine x^{2} and \frac{5}{6}x^{2} to get \frac{11}{6}x^{2}.
\frac{11}{6}x^{2}-\frac{2}{3}=0
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
x=\frac{0±\sqrt{0^{2}-4\times \frac{11}{6}\left(-\frac{2}{3}\right)}}{2\times \frac{11}{6}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{11}{6} for a, 0 for b, and -\frac{2}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{11}{6}\left(-\frac{2}{3}\right)}}{2\times \frac{11}{6}}
Square 0.
x=\frac{0±\sqrt{-\frac{22}{3}\left(-\frac{2}{3}\right)}}{2\times \frac{11}{6}}
Multiply -4 times \frac{11}{6}.
x=\frac{0±\sqrt{\frac{44}{9}}}{2\times \frac{11}{6}}
Multiply -\frac{22}{3} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{2\sqrt{11}}{3}}{2\times \frac{11}{6}}
Take the square root of \frac{44}{9}.
x=\frac{0±\frac{2\sqrt{11}}{3}}{\frac{11}{3}}
Multiply 2 times \frac{11}{6}.
x=\frac{2\sqrt{11}}{11}
Now solve the equation x=\frac{0±\frac{2\sqrt{11}}{3}}{\frac{11}{3}} when ± is plus.
x=-\frac{2\sqrt{11}}{11}
Now solve the equation x=\frac{0±\frac{2\sqrt{11}}{3}}{\frac{11}{3}} when ± is minus.
x=\frac{2\sqrt{11}}{11} x=-\frac{2\sqrt{11}}{11}
The equation is now solved.