Solve for x
x=4
Graph
Share
Copied to clipboard
\left(x+4\right)x^{2}+3x-1=\left(x+4\right)\times 16-\left(1-3x\right)
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
x^{3}+4x^{2}+3x-1=\left(x+4\right)\times 16-\left(1-3x\right)
Use the distributive property to multiply x+4 by x^{2}.
x^{3}+4x^{2}+3x-1=16x+64-\left(1-3x\right)
Use the distributive property to multiply x+4 by 16.
x^{3}+4x^{2}+3x-1=16x+64-1+3x
To find the opposite of 1-3x, find the opposite of each term.
x^{3}+4x^{2}+3x-1=16x+63+3x
Subtract 1 from 64 to get 63.
x^{3}+4x^{2}+3x-1=19x+63
Combine 16x and 3x to get 19x.
x^{3}+4x^{2}+3x-1-19x=63
Subtract 19x from both sides.
x^{3}+4x^{2}-16x-1=63
Combine 3x and -19x to get -16x.
x^{3}+4x^{2}-16x-1-63=0
Subtract 63 from both sides.
x^{3}+4x^{2}-16x-64=0
Subtract 63 from -1 to get -64.
±64,±32,±16,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -64 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=4
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+8x+16=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+4x^{2}-16x-64 by x-4 to get x^{2}+8x+16. Solve the equation where the result equals to 0.
x=\frac{-8±\sqrt{8^{2}-4\times 1\times 16}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 8 for b, and 16 for c in the quadratic formula.
x=\frac{-8±0}{2}
Do the calculations.
x=-4
Solutions are the same.
x=4
Remove the values that the variable cannot be equal to.
x=4 x=-4
List all found solutions.
x=4
Variable x cannot be equal to -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}