Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{2}{3}=x+\frac{25}{9}
Calculate \frac{5}{3} to the power of 2 and get \frac{25}{9}.
x^{2}+\frac{2}{3}-x=\frac{25}{9}
Subtract x from both sides.
x^{2}+\frac{2}{3}-x-\frac{25}{9}=0
Subtract \frac{25}{9} from both sides.
x^{2}-\frac{19}{9}-x=0
Subtract \frac{25}{9} from \frac{2}{3} to get -\frac{19}{9}.
x^{2}-x-\frac{19}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{19}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -\frac{19}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{76}{9}}}{2}
Multiply -4 times -\frac{19}{9}.
x=\frac{-\left(-1\right)±\sqrt{\frac{85}{9}}}{2}
Add 1 to \frac{76}{9}.
x=\frac{-\left(-1\right)±\frac{\sqrt{85}}{3}}{2}
Take the square root of \frac{85}{9}.
x=\frac{1±\frac{\sqrt{85}}{3}}{2}
The opposite of -1 is 1.
x=\frac{\frac{\sqrt{85}}{3}+1}{2}
Now solve the equation x=\frac{1±\frac{\sqrt{85}}{3}}{2} when ± is plus. Add 1 to \frac{\sqrt{85}}{3}.
x=\frac{\sqrt{85}}{6}+\frac{1}{2}
Divide 1+\frac{\sqrt{85}}{3} by 2.
x=\frac{-\frac{\sqrt{85}}{3}+1}{2}
Now solve the equation x=\frac{1±\frac{\sqrt{85}}{3}}{2} when ± is minus. Subtract \frac{\sqrt{85}}{3} from 1.
x=-\frac{\sqrt{85}}{6}+\frac{1}{2}
Divide 1-\frac{\sqrt{85}}{3} by 2.
x=\frac{\sqrt{85}}{6}+\frac{1}{2} x=-\frac{\sqrt{85}}{6}+\frac{1}{2}
The equation is now solved.
x^{2}+\frac{2}{3}=x+\frac{25}{9}
Calculate \frac{5}{3} to the power of 2 and get \frac{25}{9}.
x^{2}+\frac{2}{3}-x=\frac{25}{9}
Subtract x from both sides.
x^{2}-x=\frac{25}{9}-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
x^{2}-x=\frac{19}{9}
Subtract \frac{2}{3} from \frac{25}{9} to get \frac{19}{9}.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{19}{9}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{19}{9}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{85}{36}
Add \frac{19}{9} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{85}{36}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{85}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{85}}{6} x-\frac{1}{2}=-\frac{\sqrt{85}}{6}
Simplify.
x=\frac{\sqrt{85}}{6}+\frac{1}{2} x=-\frac{\sqrt{85}}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.