Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{17}{10}x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{17}{10}±\sqrt{\left(\frac{17}{10}\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{17}{10} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{17}{10}±\sqrt{\frac{289}{100}-4\left(-2\right)}}{2}
Square \frac{17}{10} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{17}{10}±\sqrt{\frac{289}{100}+8}}{2}
Multiply -4 times -2.
x=\frac{-\frac{17}{10}±\sqrt{\frac{1089}{100}}}{2}
Add \frac{289}{100} to 8.
x=\frac{-\frac{17}{10}±\frac{33}{10}}{2}
Take the square root of \frac{1089}{100}.
x=\frac{\frac{8}{5}}{2}
Now solve the equation x=\frac{-\frac{17}{10}±\frac{33}{10}}{2} when ± is plus. Add -\frac{17}{10} to \frac{33}{10} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4}{5}
Divide \frac{8}{5} by 2.
x=-\frac{5}{2}
Now solve the equation x=\frac{-\frac{17}{10}±\frac{33}{10}}{2} when ± is minus. Subtract \frac{33}{10} from -\frac{17}{10} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4}{5} x=-\frac{5}{2}
The equation is now solved.
x^{2}+\frac{17}{10}x-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{17}{10}x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
x^{2}+\frac{17}{10}x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
x^{2}+\frac{17}{10}x=2
Subtract -2 from 0.
x^{2}+\frac{17}{10}x+\left(\frac{17}{20}\right)^{2}=2+\left(\frac{17}{20}\right)^{2}
Divide \frac{17}{10}, the coefficient of the x term, by 2 to get \frac{17}{20}. Then add the square of \frac{17}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{10}x+\frac{289}{400}=2+\frac{289}{400}
Square \frac{17}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{10}x+\frac{289}{400}=\frac{1089}{400}
Add 2 to \frac{289}{400}.
\left(x+\frac{17}{20}\right)^{2}=\frac{1089}{400}
Factor x^{2}+\frac{17}{10}x+\frac{289}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{20}\right)^{2}}=\sqrt{\frac{1089}{400}}
Take the square root of both sides of the equation.
x+\frac{17}{20}=\frac{33}{20} x+\frac{17}{20}=-\frac{33}{20}
Simplify.
x=\frac{4}{5} x=-\frac{5}{2}
Subtract \frac{17}{20} from both sides of the equation.