Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{25}{9}x^{2}=4
Combine x^{2} and \frac{16}{9}x^{2} to get \frac{25}{9}x^{2}.
\frac{25}{9}x^{2}-4=0
Subtract 4 from both sides.
25x^{2}-36=0
Multiply both sides by 9.
\left(5x-6\right)\left(5x+6\right)=0
Consider 25x^{2}-36. Rewrite 25x^{2}-36 as \left(5x\right)^{2}-6^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{6}{5} x=-\frac{6}{5}
To find equation solutions, solve 5x-6=0 and 5x+6=0.
\frac{25}{9}x^{2}=4
Combine x^{2} and \frac{16}{9}x^{2} to get \frac{25}{9}x^{2}.
x^{2}=4\times \frac{9}{25}
Multiply both sides by \frac{9}{25}, the reciprocal of \frac{25}{9}.
x^{2}=\frac{36}{25}
Multiply 4 and \frac{9}{25} to get \frac{36}{25}.
x=\frac{6}{5} x=-\frac{6}{5}
Take the square root of both sides of the equation.
\frac{25}{9}x^{2}=4
Combine x^{2} and \frac{16}{9}x^{2} to get \frac{25}{9}x^{2}.
\frac{25}{9}x^{2}-4=0
Subtract 4 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{25}{9}\left(-4\right)}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{25}{9} for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{25}{9}\left(-4\right)}}{2\times \frac{25}{9}}
Square 0.
x=\frac{0±\sqrt{-\frac{100}{9}\left(-4\right)}}{2\times \frac{25}{9}}
Multiply -4 times \frac{25}{9}.
x=\frac{0±\sqrt{\frac{400}{9}}}{2\times \frac{25}{9}}
Multiply -\frac{100}{9} times -4.
x=\frac{0±\frac{20}{3}}{2\times \frac{25}{9}}
Take the square root of \frac{400}{9}.
x=\frac{0±\frac{20}{3}}{\frac{50}{9}}
Multiply 2 times \frac{25}{9}.
x=\frac{6}{5}
Now solve the equation x=\frac{0±\frac{20}{3}}{\frac{50}{9}} when ± is plus.
x=-\frac{6}{5}
Now solve the equation x=\frac{0±\frac{20}{3}}{\frac{50}{9}} when ± is minus.
x=\frac{6}{5} x=-\frac{6}{5}
The equation is now solved.