Evaluate
x^{2}+\frac{11x}{2}+6
Factor
\frac{\left(x+4\right)\left(2x+3\right)}{2}
Graph
Share
Copied to clipboard
\frac{2\left(x^{2}+6\right)}{2}+\frac{11x}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+6 times \frac{2}{2}.
\frac{2\left(x^{2}+6\right)+11x}{2}
Since \frac{2\left(x^{2}+6\right)}{2} and \frac{11x}{2} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+12+11x}{2}
Do the multiplications in 2\left(x^{2}+6\right)+11x.
\frac{2x^{2}+11x+12}{2}
Factor out \frac{1}{2}.
a+b=11 ab=2\times 12=24
Consider 2x^{2}+11x+12. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
1,24 2,12 3,8 4,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 24.
1+24=25 2+12=14 3+8=11 4+6=10
Calculate the sum for each pair.
a=3 b=8
The solution is the pair that gives sum 11.
\left(2x^{2}+3x\right)+\left(8x+12\right)
Rewrite 2x^{2}+11x+12 as \left(2x^{2}+3x\right)+\left(8x+12\right).
x\left(2x+3\right)+4\left(2x+3\right)
Factor out x in the first and 4 in the second group.
\left(2x+3\right)\left(x+4\right)
Factor out common term 2x+3 by using distributive property.
\frac{\left(2x+3\right)\left(x+4\right)}{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}