Solve for y
y=-2
x\neq 0
Solve for x
x\neq 0
y=-2\text{ and }x\neq 0
Share
Copied to clipboard
x^{2}x^{2}+1=x^{2}\left(x+\frac{1}{x}\right)^{2}+x^{2}y
Multiply both sides of the equation by x^{2}.
x^{4}+1=x^{2}\left(x+\frac{1}{x}\right)^{2}+x^{2}y
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
x^{4}+1=x^{2}\left(\frac{xx}{x}+\frac{1}{x}\right)^{2}+x^{2}y
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
x^{4}+1=x^{2}\times \left(\frac{xx+1}{x}\right)^{2}+x^{2}y
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
x^{4}+1=x^{2}\times \left(\frac{x^{2}+1}{x}\right)^{2}+x^{2}y
Do the multiplications in xx+1.
x^{4}+1=x^{2}\times \frac{\left(x^{2}+1\right)^{2}}{x^{2}}+x^{2}y
To raise \frac{x^{2}+1}{x} to a power, raise both numerator and denominator to the power and then divide.
x^{4}+1=\frac{x^{2}\left(x^{2}+1\right)^{2}}{x^{2}}+x^{2}y
Express x^{2}\times \frac{\left(x^{2}+1\right)^{2}}{x^{2}} as a single fraction.
x^{4}+1=\left(x^{2}+1\right)^{2}+x^{2}y
Cancel out x^{2} in both numerator and denominator.
x^{4}+1=\left(x^{2}\right)^{2}+2x^{2}+1+x^{2}y
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}+1=x^{4}+2x^{2}+1+x^{2}y
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+2x^{2}+1+x^{2}y=x^{4}+1
Swap sides so that all variable terms are on the left hand side.
2x^{2}+1+x^{2}y=x^{4}+1-x^{4}
Subtract x^{4} from both sides.
2x^{2}+1+x^{2}y=1
Combine x^{4} and -x^{4} to get 0.
1+x^{2}y=1-2x^{2}
Subtract 2x^{2} from both sides.
x^{2}y=1-2x^{2}-1
Subtract 1 from both sides.
x^{2}y=-2x^{2}
Subtract 1 from 1 to get 0.
\frac{x^{2}y}{x^{2}}=-\frac{2x^{2}}{x^{2}}
Divide both sides by x^{2}.
y=-\frac{2x^{2}}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
y=-2
Divide -2x^{2} by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}