Solve for x
x = \frac{\sqrt{481} + 59}{18} \approx 4.496206233
x = \frac{59 - \sqrt{481}}{18} \approx 2.059349322
Graph
Share
Copied to clipboard
5x^{2}+\left(7x-25\right)^{2}-25x+3\left(7x-25\right)=50
Multiply both sides of the equation by 5.
5x^{2}+49x^{2}-350x+625-25x+3\left(7x-25\right)=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7x-25\right)^{2}.
54x^{2}-350x+625-25x+3\left(7x-25\right)=50
Combine 5x^{2} and 49x^{2} to get 54x^{2}.
54x^{2}-375x+625+3\left(7x-25\right)=50
Combine -350x and -25x to get -375x.
54x^{2}-375x+625+21x-75=50
Use the distributive property to multiply 3 by 7x-25.
54x^{2}-354x+625-75=50
Combine -375x and 21x to get -354x.
54x^{2}-354x+550=50
Subtract 75 from 625 to get 550.
54x^{2}-354x+550-50=0
Subtract 50 from both sides.
54x^{2}-354x+500=0
Subtract 50 from 550 to get 500.
x=\frac{-\left(-354\right)±\sqrt{\left(-354\right)^{2}-4\times 54\times 500}}{2\times 54}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 54 for a, -354 for b, and 500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-354\right)±\sqrt{125316-4\times 54\times 500}}{2\times 54}
Square -354.
x=\frac{-\left(-354\right)±\sqrt{125316-216\times 500}}{2\times 54}
Multiply -4 times 54.
x=\frac{-\left(-354\right)±\sqrt{125316-108000}}{2\times 54}
Multiply -216 times 500.
x=\frac{-\left(-354\right)±\sqrt{17316}}{2\times 54}
Add 125316 to -108000.
x=\frac{-\left(-354\right)±6\sqrt{481}}{2\times 54}
Take the square root of 17316.
x=\frac{354±6\sqrt{481}}{2\times 54}
The opposite of -354 is 354.
x=\frac{354±6\sqrt{481}}{108}
Multiply 2 times 54.
x=\frac{6\sqrt{481}+354}{108}
Now solve the equation x=\frac{354±6\sqrt{481}}{108} when ± is plus. Add 354 to 6\sqrt{481}.
x=\frac{\sqrt{481}+59}{18}
Divide 354+6\sqrt{481} by 108.
x=\frac{354-6\sqrt{481}}{108}
Now solve the equation x=\frac{354±6\sqrt{481}}{108} when ± is minus. Subtract 6\sqrt{481} from 354.
x=\frac{59-\sqrt{481}}{18}
Divide 354-6\sqrt{481} by 108.
x=\frac{\sqrt{481}+59}{18} x=\frac{59-\sqrt{481}}{18}
The equation is now solved.
5x^{2}+\left(7x-25\right)^{2}-25x+3\left(7x-25\right)=50
Multiply both sides of the equation by 5.
5x^{2}+49x^{2}-350x+625-25x+3\left(7x-25\right)=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7x-25\right)^{2}.
54x^{2}-350x+625-25x+3\left(7x-25\right)=50
Combine 5x^{2} and 49x^{2} to get 54x^{2}.
54x^{2}-375x+625+3\left(7x-25\right)=50
Combine -350x and -25x to get -375x.
54x^{2}-375x+625+21x-75=50
Use the distributive property to multiply 3 by 7x-25.
54x^{2}-354x+625-75=50
Combine -375x and 21x to get -354x.
54x^{2}-354x+550=50
Subtract 75 from 625 to get 550.
54x^{2}-354x=50-550
Subtract 550 from both sides.
54x^{2}-354x=-500
Subtract 550 from 50 to get -500.
\frac{54x^{2}-354x}{54}=-\frac{500}{54}
Divide both sides by 54.
x^{2}+\left(-\frac{354}{54}\right)x=-\frac{500}{54}
Dividing by 54 undoes the multiplication by 54.
x^{2}-\frac{59}{9}x=-\frac{500}{54}
Reduce the fraction \frac{-354}{54} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{59}{9}x=-\frac{250}{27}
Reduce the fraction \frac{-500}{54} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{59}{9}x+\left(-\frac{59}{18}\right)^{2}=-\frac{250}{27}+\left(-\frac{59}{18}\right)^{2}
Divide -\frac{59}{9}, the coefficient of the x term, by 2 to get -\frac{59}{18}. Then add the square of -\frac{59}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{59}{9}x+\frac{3481}{324}=-\frac{250}{27}+\frac{3481}{324}
Square -\frac{59}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{59}{9}x+\frac{3481}{324}=\frac{481}{324}
Add -\frac{250}{27} to \frac{3481}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{59}{18}\right)^{2}=\frac{481}{324}
Factor x^{2}-\frac{59}{9}x+\frac{3481}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{18}\right)^{2}}=\sqrt{\frac{481}{324}}
Take the square root of both sides of the equation.
x-\frac{59}{18}=\frac{\sqrt{481}}{18} x-\frac{59}{18}=-\frac{\sqrt{481}}{18}
Simplify.
x=\frac{\sqrt{481}+59}{18} x=\frac{59-\sqrt{481}}{18}
Add \frac{59}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}