Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{6}-a^{6}\right)\left(x^{6}+a^{6}\right)
Rewrite x^{12}-a^{12} as \left(x^{6}\right)^{2}-\left(a^{6}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x^{3}-a^{3}\right)\left(x^{3}+a^{3}\right)
Consider x^{6}-a^{6}. Rewrite x^{6}-a^{6} as \left(x^{3}\right)^{2}-\left(a^{3}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x-a\right)\left(x^{2}+ax+a^{2}\right)
Consider x^{3}-a^{3}. The difference of cubes can be factored using the rule: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(x+a\right)\left(x^{2}-ax+a^{2}\right)
Consider x^{3}+a^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(x^{2}+a^{2}\right)\left(x^{4}-a^{2}x^{2}+a^{4}\right)
Consider x^{6}+a^{6}. Rewrite x^{6}+a^{6} as \left(x^{2}\right)^{3}+\left(a^{2}\right)^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(x-a\right)\left(x+a\right)\left(x^{2}-ax+a^{2}\right)\left(x^{2}+ax+a^{2}\right)\left(x^{4}-a^{2}x^{2}+a^{4}\right)\left(x^{2}+a^{2}\right)
Rewrite the complete factored expression.