Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}-33t+52=0
Substitute t for x^{5}.
t=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 1\times 52}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -33 for b, and 52 for c in the quadratic formula.
t=\frac{33±\sqrt{881}}{2}
Do the calculations.
t=\frac{\sqrt{881}+33}{2} t=\frac{33-\sqrt{881}}{2}
Solve the equation t=\frac{33±\sqrt{881}}{2} when ± is plus and when ± is minus.
x=-ie^{\frac{\pi i}{10}}\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=-e^{\frac{\pi i}{5}}\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=ie^{\frac{3\pi i}{10}}\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=e^{\frac{2\pi i}{5}}\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=-ie^{\frac{\pi i}{10}}\sqrt[5]{\frac{33-\sqrt{881}}{2}} x=-e^{\frac{\pi i}{5}}\sqrt[5]{\frac{33-\sqrt{881}}{2}} x=ie^{\frac{3\pi i}{10}}\sqrt[5]{\frac{33-\sqrt{881}}{2}} x=e^{\frac{2\pi i}{5}}\sqrt[5]{\frac{33-\sqrt{881}}{2}} x=\sqrt[5]{\frac{33-\sqrt{881}}{2}}
Since x=t^{5}, the solutions are obtained by solving the equation for each t.
t^{2}-33t+52=0
Substitute t for x^{5}.
t=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 1\times 52}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -33 for b, and 52 for c in the quadratic formula.
t=\frac{33±\sqrt{881}}{2}
Do the calculations.
t=\frac{\sqrt{881}+33}{2} t=\frac{33-\sqrt{881}}{2}
Solve the equation t=\frac{33±\sqrt{881}}{2} when ± is plus and when ± is minus.
x=\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=\sqrt[5]{\frac{33-\sqrt{881}}{2}}
Since x=t^{5}, the solutions are obtained by evaluating x=\sqrt[5]{t} for each t.