Solve for x (complex solution)
x\in \frac{2^{\frac{4}{5}}\sqrt[5]{33-\sqrt{881}}}{2},\frac{2^{\frac{4}{5}}e^{\frac{8\pi i}{5}}\sqrt[5]{33-\sqrt{881}}}{2},\frac{2^{\frac{4}{5}}e^{\frac{2\pi i}{5}}\sqrt[5]{33-\sqrt{881}}}{2},\frac{2^{\frac{4}{5}}e^{\frac{4\pi i}{5}}\sqrt[5]{33-\sqrt{881}}}{2},\frac{2^{\frac{4}{5}}e^{\frac{6\pi i}{5}}\sqrt[5]{33-\sqrt{881}}}{2},\frac{2^{\frac{4}{5}}e^{\frac{8\pi i}{5}}\sqrt[5]{\sqrt{881}+33}}{2},\frac{2^{\frac{4}{5}}\sqrt[5]{\sqrt{881}+33}}{2},\frac{2^{\frac{4}{5}}e^{\frac{2\pi i}{5}}\sqrt[5]{\sqrt{881}+33}}{2},\frac{2^{\frac{4}{5}}e^{\frac{4\pi i}{5}}\sqrt[5]{\sqrt{881}+33}}{2},\frac{2^{\frac{4}{5}}e^{\frac{6\pi i}{5}}\sqrt[5]{\sqrt{881}+33}}{2}
Solve for x
x = \frac{2 ^ {\frac{4}{5}} \sqrt[5]{\sqrt{881} + 33}}{2} \approx 1.991691532
x = \frac{2 ^ {\frac{4}{5}} \sqrt[5]{33 - \sqrt{881}}}{2} \approx 1.106569236
Graph
Share
Copied to clipboard
t^{2}-33t+52=0
Substitute t for x^{5}.
t=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 1\times 52}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -33 for b, and 52 for c in the quadratic formula.
t=\frac{33±\sqrt{881}}{2}
Do the calculations.
t=\frac{\sqrt{881}+33}{2} t=\frac{33-\sqrt{881}}{2}
Solve the equation t=\frac{33±\sqrt{881}}{2} when ± is plus and when ± is minus.
x=-ie^{\frac{\pi i}{10}}\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=-e^{\frac{\pi i}{5}}\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=ie^{\frac{3\pi i}{10}}\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=e^{\frac{2\pi i}{5}}\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=-ie^{\frac{\pi i}{10}}\sqrt[5]{\frac{33-\sqrt{881}}{2}} x=-e^{\frac{\pi i}{5}}\sqrt[5]{\frac{33-\sqrt{881}}{2}} x=ie^{\frac{3\pi i}{10}}\sqrt[5]{\frac{33-\sqrt{881}}{2}} x=e^{\frac{2\pi i}{5}}\sqrt[5]{\frac{33-\sqrt{881}}{2}} x=\sqrt[5]{\frac{33-\sqrt{881}}{2}}
Since x=t^{5}, the solutions are obtained by solving the equation for each t.
t^{2}-33t+52=0
Substitute t for x^{5}.
t=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 1\times 52}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -33 for b, and 52 for c in the quadratic formula.
t=\frac{33±\sqrt{881}}{2}
Do the calculations.
t=\frac{\sqrt{881}+33}{2} t=\frac{33-\sqrt{881}}{2}
Solve the equation t=\frac{33±\sqrt{881}}{2} when ± is plus and when ± is minus.
x=\sqrt[5]{\frac{\sqrt{881}+33}{2}} x=\sqrt[5]{\frac{33-\sqrt{881}}{2}}
Since x=t^{5}, the solutions are obtained by evaluating x=\sqrt[5]{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}