Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{-3}\times \frac{6^{-1}}{\left(5x\right)^{-1}}
To raise \frac{6}{5x} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{-3}\times 6^{-1}}{\left(5x\right)^{-1}}
Express x^{-3}\times \frac{6^{-1}}{\left(5x\right)^{-1}} as a single fraction.
\frac{x^{-3}\times \frac{1}{6}}{\left(5x\right)^{-1}}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{x^{-3}\times \frac{1}{6}}{5^{-1}x^{-1}}
Expand \left(5x\right)^{-1}.
\frac{x^{-3}\times \frac{1}{6}}{\frac{1}{5}x^{-1}}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\frac{1}{6}}{\frac{1}{5}x^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{6\times \frac{1}{5}x^{2}}
Express \frac{\frac{1}{6}}{\frac{1}{5}x^{2}} as a single fraction.
\frac{1}{\frac{6}{5}x^{2}}
Multiply 6 and \frac{1}{5} to get \frac{6}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{-3}\times \frac{6^{-1}}{\left(5x\right)^{-1}})
To raise \frac{6}{5x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-3}\times 6^{-1}}{\left(5x\right)^{-1}})
Express x^{-3}\times \frac{6^{-1}}{\left(5x\right)^{-1}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-3}\times \frac{1}{6}}{\left(5x\right)^{-1}})
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-3}\times \frac{1}{6}}{5^{-1}x^{-1}})
Expand \left(5x\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-3}\times \frac{1}{6}}{\frac{1}{5}x^{-1}})
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{6}}{\frac{1}{5}x^{2}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{6\times \frac{1}{5}x^{2}})
Express \frac{\frac{1}{6}}{\frac{1}{5}x^{2}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{6}{5}x^{2}})
Multiply 6 and \frac{1}{5} to get \frac{6}{5}.
-\left(\frac{6}{5}x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6}{5}x^{2})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(\frac{6}{5}x^{2}\right)^{-2}\times 2\times \frac{6}{5}x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{12}{5}x^{1}\times \left(\frac{6}{5}x^{2}\right)^{-2}
Simplify.
-\frac{12}{5}x\times \left(\frac{6}{5}x^{2}\right)^{-2}
For any term t, t^{1}=t.