Evaluate
\frac{5}{6x^{2}}
Differentiate w.r.t. x
-\frac{5}{3x^{3}}
Graph
Share
Copied to clipboard
x^{-3}\times \frac{6^{-1}}{\left(5x\right)^{-1}}
To raise \frac{6}{5x} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{-3}\times 6^{-1}}{\left(5x\right)^{-1}}
Express x^{-3}\times \frac{6^{-1}}{\left(5x\right)^{-1}} as a single fraction.
\frac{x^{-3}\times \frac{1}{6}}{\left(5x\right)^{-1}}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{x^{-3}\times \frac{1}{6}}{5^{-1}x^{-1}}
Expand \left(5x\right)^{-1}.
\frac{x^{-3}\times \frac{1}{6}}{\frac{1}{5}x^{-1}}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\frac{1}{6}}{\frac{1}{5}x^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{6\times \frac{1}{5}x^{2}}
Express \frac{\frac{1}{6}}{\frac{1}{5}x^{2}} as a single fraction.
\frac{1}{\frac{6}{5}x^{2}}
Multiply 6 and \frac{1}{5} to get \frac{6}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{-3}\times \frac{6^{-1}}{\left(5x\right)^{-1}})
To raise \frac{6}{5x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-3}\times 6^{-1}}{\left(5x\right)^{-1}})
Express x^{-3}\times \frac{6^{-1}}{\left(5x\right)^{-1}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-3}\times \frac{1}{6}}{\left(5x\right)^{-1}})
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-3}\times \frac{1}{6}}{5^{-1}x^{-1}})
Expand \left(5x\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-3}\times \frac{1}{6}}{\frac{1}{5}x^{-1}})
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{6}}{\frac{1}{5}x^{2}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{6\times \frac{1}{5}x^{2}})
Express \frac{\frac{1}{6}}{\frac{1}{5}x^{2}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\frac{6}{5}x^{2}})
Multiply 6 and \frac{1}{5} to get \frac{6}{5}.
-\left(\frac{6}{5}x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6}{5}x^{2})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(\frac{6}{5}x^{2}\right)^{-2}\times 2\times \frac{6}{5}x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{12}{5}x^{1}\times \left(\frac{6}{5}x^{2}\right)^{-2}
Simplify.
-\frac{12}{5}x\times \left(\frac{6}{5}x^{2}\right)^{-2}
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}