Solve for x
x=\frac{3}{16}=0.1875
Graph
Share
Copied to clipboard
\frac{1}{x}\sqrt{3x}=4
Reorder the terms.
1\sqrt{3x}=4x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
1\sqrt{3x}-4x=0
Subtract 4x from both sides.
-4x+\sqrt{3x}=0
Reorder the terms.
\sqrt{3x}=4x
Subtract -4x from both sides of the equation.
\left(\sqrt{3x}\right)^{2}=\left(4x\right)^{2}
Square both sides of the equation.
3x=\left(4x\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
3x=4^{2}x^{2}
Expand \left(4x\right)^{2}.
3x=16x^{2}
Calculate 4 to the power of 2 and get 16.
3x-16x^{2}=0
Subtract 16x^{2} from both sides.
x\left(3-16x\right)=0
Factor out x.
x=0 x=\frac{3}{16}
To find equation solutions, solve x=0 and 3-16x=0.
0^{-1}\sqrt{3\times 0}=4
Substitute 0 for x in the equation x^{-1}\sqrt{3x}=4. The expression is undefined.
\left(\frac{3}{16}\right)^{-1}\sqrt{3\times \frac{3}{16}}=4
Substitute \frac{3}{16} for x in the equation x^{-1}\sqrt{3x}=4.
4=4
Simplify. The value x=\frac{3}{16} satisfies the equation.
x=\frac{3}{16}
Equation \sqrt{3x}=4x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}