Solve for I
I=\frac{1}{tx}
x\neq 0\text{ and }t\neq 0
Solve for t
t=\frac{1}{Ix}
x\neq 0\text{ and }I\neq 0
Share
Copied to clipboard
Itx=\frac{\mathrm{d}}{\mathrm{d}x}(x)
Swap sides so that all variable terms are on the left hand side.
txI=1
The equation is in standard form.
\frac{txI}{tx}=\frac{1}{tx}
Divide both sides by tx.
I=\frac{1}{tx}
Dividing by tx undoes the multiplication by tx.
Itx=\frac{\mathrm{d}}{\mathrm{d}x}(x)
Swap sides so that all variable terms are on the left hand side.
Ixt=1
The equation is in standard form.
\frac{Ixt}{Ix}=\frac{1}{Ix}
Divide both sides by Ix.
t=\frac{1}{Ix}
Dividing by Ix undoes the multiplication by Ix.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}