Solve for y
y=-\frac{2}{-x^{2}+2x-3}
Solve for x
x=-\sqrt{-2+\frac{2}{y}}+1
x=\sqrt{-2+\frac{2}{y}}+1\text{, }y>0\text{ and }y\leq 1
Share
Copied to clipboard
2\frac{\mathrm{d}}{\mathrm{d}x}(x)=\frac{1}{2}x^{2}\times 2y-x\times 2y+2y\times \frac{3}{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2y, the least common multiple of y,2.
2\frac{\mathrm{d}}{\mathrm{d}x}(x)=x^{2}y-x\times 2y+2y\times \frac{3}{2}
Multiply \frac{1}{2} and 2 to get 1.
2\frac{\mathrm{d}}{\mathrm{d}x}(x)=x^{2}y-2xy+2y\times \frac{3}{2}
Multiply -1 and 2 to get -2.
2\frac{\mathrm{d}}{\mathrm{d}x}(x)=x^{2}y-2xy+3y
Multiply 2 and \frac{3}{2} to get 3.
x^{2}y-2xy+3y=2\frac{\mathrm{d}}{\mathrm{d}x}(x)
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-2x+3\right)y=2\frac{\mathrm{d}}{\mathrm{d}x}(x)
Combine all terms containing y.
\left(x^{2}-2x+3\right)y=2
The equation is in standard form.
\frac{\left(x^{2}-2x+3\right)y}{x^{2}-2x+3}=\frac{2}{x^{2}-2x+3}
Divide both sides by x^{2}-2x+3.
y=\frac{2}{x^{2}-2x+3}
Dividing by x^{2}-2x+3 undoes the multiplication by x^{2}-2x+3.
y=\frac{2}{x^{2}-2x+3}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}