Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(10a^{2}+9a-4)
Combine 5a and 4a to get 9a.
10a^{2}+9a-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-9±\sqrt{9^{2}-4\times 10\left(-4\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-9±\sqrt{81-4\times 10\left(-4\right)}}{2\times 10}
Square 9.
a=\frac{-9±\sqrt{81-40\left(-4\right)}}{2\times 10}
Multiply -4 times 10.
a=\frac{-9±\sqrt{81+160}}{2\times 10}
Multiply -40 times -4.
a=\frac{-9±\sqrt{241}}{2\times 10}
Add 81 to 160.
a=\frac{-9±\sqrt{241}}{20}
Multiply 2 times 10.
a=\frac{\sqrt{241}-9}{20}
Now solve the equation a=\frac{-9±\sqrt{241}}{20} when ± is plus. Add -9 to \sqrt{241}.
a=\frac{-\sqrt{241}-9}{20}
Now solve the equation a=\frac{-9±\sqrt{241}}{20} when ± is minus. Subtract \sqrt{241} from -9.
10a^{2}+9a-4=10\left(a-\frac{\sqrt{241}-9}{20}\right)\left(a-\frac{-\sqrt{241}-9}{20}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-9+\sqrt{241}}{20} for x_{1} and \frac{-9-\sqrt{241}}{20} for x_{2}.
10a^{2}+9a-4
Combine 5a and 4a to get 9a.