Solve for x
x=y\left(0.5+y-2iy^{2}\right)
Solve for y
y=-\frac{\sqrt[3]{2}\left(1+i\sqrt{3}\right)\left(3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)\right)^{-\frac{1}{3}}\left(\sqrt[3]{2}\left(-\left(3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)\right)^{\frac{2}{3}}+\sqrt[3]{2}\left(\sqrt[3]{3\left(9\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108i\sqrt{3}x+\left(-9+2i\right)\sqrt{3}\right)}+i\sqrt[3]{3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)}\right)\right)-i\sqrt[3]{2\left(3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)\right)}\sqrt[3]{3\left(9\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108i\sqrt{3}x+\left(-9+2i\right)\sqrt{3}\right)}+\left(-4-12i\right)\right)}{48}
y=\frac{2^{\frac{2}{3}}\left(3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)\right)^{-\frac{1}{3}}\left(\left(3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)\right)^{\frac{2}{3}}+\sqrt[3]{2}\left(-i\sqrt[3]{3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)}+\left(-1-3i\right)\sqrt[3]{2}\right)\right)}{12}
y=-\frac{\sqrt[3]{2}\left(-i\sqrt{3}+1\right)\left(3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)\right)^{-\frac{1}{3}}\left(\sqrt[3]{2}\left(-\left(3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)\right)^{\frac{2}{3}}+\sqrt[3]{2}\left(-\sqrt[3]{3\left(9\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108i\sqrt{3}x+\left(-9+2i\right)\sqrt{3}\right)}+i\sqrt[3]{3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)}\right)\right)+i\sqrt[3]{2\left(3\sqrt{3}\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108ix+\left(-9+2i\right)\right)}\sqrt[3]{3\left(9\sqrt{-1-4i+\left(-16-72i\right)x-432x^{2}}+108i\sqrt{3}x+\left(-9+2i\right)\sqrt{3}\right)}+\left(-4-12i\right)\right)}{48}
Share
Copied to clipboard
x=y^{2}+0.5y-2iy^{3}
Calculate the square root of -4 and get 2i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}