Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }n=\frac{\pi n_{1}i}{\ln(2)}\end{matrix}\right.
Solve for n
\left\{\begin{matrix}\\n=0\text{, }&\text{unconditionally}\\n\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&n=0\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}\\n=-\frac{\pi n_{1}i}{\ln(2)}\text{, }n_{1}\in \mathrm{Z}\text{, }&\text{unconditionally}\\n\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x-x\times 4^{-n}=0
Subtract x\times 4^{-n} from both sides.
-x\times 4^{-n}+x=0
Reorder the terms.
\left(-4^{-n}+1\right)x=0
Combine all terms containing x.
\left(-\frac{1}{4^{n}}+1\right)x=0
The equation is in standard form.
x=0
Divide 0 by -4^{-n}+1.
x\times 4^{-n}=x
Swap sides so that all variable terms are on the left hand side.
4^{-n}=1
Divide both sides by x.
\log(4^{-n})=\log(1)
Take the logarithm of both sides of the equation.
-n\log(4)=\log(1)
The logarithm of a number raised to a power is the power times the logarithm of the number.
-n=\frac{\log(1)}{\log(4)}
Divide both sides by \log(4).
-n=\log_{4}\left(1\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=\frac{0}{-1}
Divide both sides by -1.
x-x\times 4^{-n}=0
Subtract x\times 4^{-n} from both sides.
-x\times 4^{-n}+x=0
Reorder the terms.
\left(-4^{-n}+1\right)x=0
Combine all terms containing x.
\left(-\frac{1}{4^{n}}+1\right)x=0
The equation is in standard form.
x=0
Divide 0 by -4^{-n}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}