x = x ^ { 2 } d x =
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{1}{x^{2}}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{1}{x^{2}}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=-d^{-\frac{1}{2}}\text{; }x=d^{-\frac{1}{2}}\text{, }&d\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{1}{\sqrt{d}}\text{; }x=-\frac{1}{\sqrt{d}}\text{, }&d>0\end{matrix}\right.
Graph
Share
Copied to clipboard
x=x^{3}d
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{3}d=x
Swap sides so that all variable terms are on the left hand side.
\frac{x^{3}d}{x^{3}}=\frac{x}{x^{3}}
Divide both sides by x^{3}.
d=\frac{x}{x^{3}}
Dividing by x^{3} undoes the multiplication by x^{3}.
d=\frac{1}{x^{2}}
Divide x by x^{3}.
x=x^{3}d
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{3}d=x
Swap sides so that all variable terms are on the left hand side.
\frac{x^{3}d}{x^{3}}=\frac{x}{x^{3}}
Divide both sides by x^{3}.
d=\frac{x}{x^{3}}
Dividing by x^{3} undoes the multiplication by x^{3}.
d=\frac{1}{x^{2}}
Divide x by x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}