Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-x^{2}=-6x+14
Subtract x^{2} from both sides.
x-x^{2}+6x=14
Add 6x to both sides.
7x-x^{2}=14
Combine x and 6x to get 7x.
7x-x^{2}-14=0
Subtract 14 from both sides.
-x^{2}+7x-14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 7 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
Square 7.
x=\frac{-7±\sqrt{49+4\left(-14\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-7±\sqrt{49-56}}{2\left(-1\right)}
Multiply 4 times -14.
x=\frac{-7±\sqrt{-7}}{2\left(-1\right)}
Add 49 to -56.
x=\frac{-7±\sqrt{7}i}{2\left(-1\right)}
Take the square root of -7.
x=\frac{-7±\sqrt{7}i}{-2}
Multiply 2 times -1.
x=\frac{-7+\sqrt{7}i}{-2}
Now solve the equation x=\frac{-7±\sqrt{7}i}{-2} when ± is plus. Add -7 to i\sqrt{7}.
x=\frac{-\sqrt{7}i+7}{2}
Divide -7+i\sqrt{7} by -2.
x=\frac{-\sqrt{7}i-7}{-2}
Now solve the equation x=\frac{-7±\sqrt{7}i}{-2} when ± is minus. Subtract i\sqrt{7} from -7.
x=\frac{7+\sqrt{7}i}{2}
Divide -7-i\sqrt{7} by -2.
x=\frac{-\sqrt{7}i+7}{2} x=\frac{7+\sqrt{7}i}{2}
The equation is now solved.
x-x^{2}=-6x+14
Subtract x^{2} from both sides.
x-x^{2}+6x=14
Add 6x to both sides.
7x-x^{2}=14
Combine x and 6x to get 7x.
-x^{2}+7x=14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+7x}{-1}=\frac{14}{-1}
Divide both sides by -1.
x^{2}+\frac{7}{-1}x=\frac{14}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-7x=\frac{14}{-1}
Divide 7 by -1.
x^{2}-7x=-14
Divide 14 by -1.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-14+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-14+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=-\frac{7}{4}
Add -14 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=-\frac{7}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{7}i}{2} x-\frac{7}{2}=-\frac{\sqrt{7}i}{2}
Simplify.
x=\frac{7+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i+7}{2}
Add \frac{7}{2} to both sides of the equation.