Solve for x (complex solution)
x=\sqrt{61}-8\approx -0.189750324
x=-\left(\sqrt{61}+8\right)\approx -15.810249676
Solve for x
x=\sqrt{61}-8\approx -0.189750324
x=-\sqrt{61}-8\approx -15.810249676
Graph
Share
Copied to clipboard
x-x^{2}=17x+3
Subtract x^{2} from both sides.
x-x^{2}-17x=3
Subtract 17x from both sides.
-16x-x^{2}=3
Combine x and -17x to get -16x.
-16x-x^{2}-3=0
Subtract 3 from both sides.
-x^{2}-16x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -16 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-16\right)±\sqrt{256-12}}{2\left(-1\right)}
Multiply 4 times -3.
x=\frac{-\left(-16\right)±\sqrt{244}}{2\left(-1\right)}
Add 256 to -12.
x=\frac{-\left(-16\right)±2\sqrt{61}}{2\left(-1\right)}
Take the square root of 244.
x=\frac{16±2\sqrt{61}}{2\left(-1\right)}
The opposite of -16 is 16.
x=\frac{16±2\sqrt{61}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{61}+16}{-2}
Now solve the equation x=\frac{16±2\sqrt{61}}{-2} when ± is plus. Add 16 to 2\sqrt{61}.
x=-\left(\sqrt{61}+8\right)
Divide 16+2\sqrt{61} by -2.
x=\frac{16-2\sqrt{61}}{-2}
Now solve the equation x=\frac{16±2\sqrt{61}}{-2} when ± is minus. Subtract 2\sqrt{61} from 16.
x=\sqrt{61}-8
Divide 16-2\sqrt{61} by -2.
x=-\left(\sqrt{61}+8\right) x=\sqrt{61}-8
The equation is now solved.
x-x^{2}=17x+3
Subtract x^{2} from both sides.
x-x^{2}-17x=3
Subtract 17x from both sides.
-16x-x^{2}=3
Combine x and -17x to get -16x.
-x^{2}-16x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-16x}{-1}=\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{16}{-1}\right)x=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+16x=\frac{3}{-1}
Divide -16 by -1.
x^{2}+16x=-3
Divide 3 by -1.
x^{2}+16x+8^{2}=-3+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=-3+64
Square 8.
x^{2}+16x+64=61
Add -3 to 64.
\left(x+8\right)^{2}=61
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{61}
Take the square root of both sides of the equation.
x+8=\sqrt{61} x+8=-\sqrt{61}
Simplify.
x=\sqrt{61}-8 x=-\sqrt{61}-8
Subtract 8 from both sides of the equation.
x-x^{2}=17x+3
Subtract x^{2} from both sides.
x-x^{2}-17x=3
Subtract 17x from both sides.
-16x-x^{2}=3
Combine x and -17x to get -16x.
-16x-x^{2}-3=0
Subtract 3 from both sides.
-x^{2}-16x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -16 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-16\right)±\sqrt{256-12}}{2\left(-1\right)}
Multiply 4 times -3.
x=\frac{-\left(-16\right)±\sqrt{244}}{2\left(-1\right)}
Add 256 to -12.
x=\frac{-\left(-16\right)±2\sqrt{61}}{2\left(-1\right)}
Take the square root of 244.
x=\frac{16±2\sqrt{61}}{2\left(-1\right)}
The opposite of -16 is 16.
x=\frac{16±2\sqrt{61}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{61}+16}{-2}
Now solve the equation x=\frac{16±2\sqrt{61}}{-2} when ± is plus. Add 16 to 2\sqrt{61}.
x=-\left(\sqrt{61}+8\right)
Divide 16+2\sqrt{61} by -2.
x=\frac{16-2\sqrt{61}}{-2}
Now solve the equation x=\frac{16±2\sqrt{61}}{-2} when ± is minus. Subtract 2\sqrt{61} from 16.
x=\sqrt{61}-8
Divide 16-2\sqrt{61} by -2.
x=-\left(\sqrt{61}+8\right) x=\sqrt{61}-8
The equation is now solved.
x-x^{2}=17x+3
Subtract x^{2} from both sides.
x-x^{2}-17x=3
Subtract 17x from both sides.
-16x-x^{2}=3
Combine x and -17x to get -16x.
-x^{2}-16x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-16x}{-1}=\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{16}{-1}\right)x=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+16x=\frac{3}{-1}
Divide -16 by -1.
x^{2}+16x=-3
Divide 3 by -1.
x^{2}+16x+8^{2}=-3+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=-3+64
Square 8.
x^{2}+16x+64=61
Add -3 to 64.
\left(x+8\right)^{2}=61
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{61}
Take the square root of both sides of the equation.
x+8=\sqrt{61} x+8=-\sqrt{61}
Simplify.
x=\sqrt{61}-8 x=-\sqrt{61}-8
Subtract 8 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}