Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{x}{y^{2}}\text{, }&y\neq 0\\k\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{x}{y^{2}}\text{, }&y\neq 0\\k\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x
x=-ky^{2}
Graph
Share
Copied to clipboard
k\left(-y^{2}\right)=x
Swap sides so that all variable terms are on the left hand side.
-ky^{2}=x
Reorder the terms.
\left(-y^{2}\right)k=x
The equation is in standard form.
\frac{\left(-y^{2}\right)k}{-y^{2}}=\frac{x}{-y^{2}}
Divide both sides by -y^{2}.
k=\frac{x}{-y^{2}}
Dividing by -y^{2} undoes the multiplication by -y^{2}.
k=-\frac{x}{y^{2}}
Divide x by -y^{2}.
k\left(-y^{2}\right)=x
Swap sides so that all variable terms are on the left hand side.
-ky^{2}=x
Reorder the terms.
\left(-y^{2}\right)k=x
The equation is in standard form.
\frac{\left(-y^{2}\right)k}{-y^{2}}=\frac{x}{-y^{2}}
Divide both sides by -y^{2}.
k=\frac{x}{-y^{2}}
Dividing by -y^{2} undoes the multiplication by -y^{2}.
k=-\frac{x}{y^{2}}
Divide x by -y^{2}.
x=-ky^{2}
Reorder the terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}