Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{r-x}{q}\text{, }&q\neq 0\\b\in \mathrm{C}\text{, }&x=r\text{ and }q=0\end{matrix}\right.
Solve for q (complex solution)
\left\{\begin{matrix}q=-\frac{r-x}{b}\text{, }&b\neq 0\\q\in \mathrm{C}\text{, }&x=r\text{ and }b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{r-x}{q}\text{, }&q\neq 0\\b\in \mathrm{R}\text{, }&x=r\text{ and }q=0\end{matrix}\right.
Solve for q
\left\{\begin{matrix}q=-\frac{r-x}{b}\text{, }&b\neq 0\\q\in \mathrm{R}\text{, }&x=r\text{ and }b=0\end{matrix}\right.
Graph
Share
Copied to clipboard
bq+r=x
Swap sides so that all variable terms are on the left hand side.
bq=x-r
Subtract r from both sides.
qb=x-r
The equation is in standard form.
\frac{qb}{q}=\frac{x-r}{q}
Divide both sides by q.
b=\frac{x-r}{q}
Dividing by q undoes the multiplication by q.
bq+r=x
Swap sides so that all variable terms are on the left hand side.
bq=x-r
Subtract r from both sides.
\frac{bq}{b}=\frac{x-r}{b}
Divide both sides by b.
q=\frac{x-r}{b}
Dividing by b undoes the multiplication by b.
bq+r=x
Swap sides so that all variable terms are on the left hand side.
bq=x-r
Subtract r from both sides.
qb=x-r
The equation is in standard form.
\frac{qb}{q}=\frac{x-r}{q}
Divide both sides by q.
b=\frac{x-r}{q}
Dividing by q undoes the multiplication by q.
bq+r=x
Swap sides so that all variable terms are on the left hand side.
bq=x-r
Subtract r from both sides.
\frac{bq}{b}=\frac{x-r}{b}
Divide both sides by b.
q=\frac{x-r}{b}
Dividing by b undoes the multiplication by b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}