Solve for a
\left\{\begin{matrix}a=-\frac{x}{\sin(y)-1}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }y=2\pi n_{1}+\frac{\pi }{2}\\a\in \mathrm{R}\text{, }&x=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }y=2\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
Solve for x
x=a\left(-\sin(y)+1\right)
Graph
Share
Copied to clipboard
a\left(1-\sin(y)\right)=x
Swap sides so that all variable terms are on the left hand side.
a-a\sin(y)=x
Use the distributive property to multiply a by 1-\sin(y).
\left(1-\sin(y)\right)a=x
Combine all terms containing a.
\left(-\sin(y)+1\right)a=x
The equation is in standard form.
\frac{\left(-\sin(y)+1\right)a}{-\sin(y)+1}=\frac{x}{-\sin(y)+1}
Divide both sides by 1-\sin(y).
a=\frac{x}{-\sin(y)+1}
Dividing by 1-\sin(y) undoes the multiplication by 1-\sin(y).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}