Solve for x
x=-\frac{3}{1-5y}
y\neq \frac{1}{5}
Solve for y
y=\frac{1}{5}+\frac{3}{5x}
x\neq 0
Graph
Share
Copied to clipboard
x-5xy=-3
Subtract 5xy from both sides.
\left(1-5y\right)x=-3
Combine all terms containing x.
\frac{\left(1-5y\right)x}{1-5y}=-\frac{3}{1-5y}
Divide both sides by -5y+1.
x=-\frac{3}{1-5y}
Dividing by -5y+1 undoes the multiplication by -5y+1.
5xy-3=x
Swap sides so that all variable terms are on the left hand side.
5xy=x+3
Add 3 to both sides.
\frac{5xy}{5x}=\frac{x+3}{5x}
Divide both sides by 5x.
y=\frac{x+3}{5x}
Dividing by 5x undoes the multiplication by 5x.
y=\frac{1}{5}+\frac{3}{5x}
Divide x+3 by 5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}