Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+1=5\sqrt{1-x}
Subtract -1 from both sides of the equation.
\left(x+1\right)^{2}=\left(5\sqrt{1-x}\right)^{2}
Square both sides of the equation.
x^{2}+2x+1=\left(5\sqrt{1-x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1=5^{2}\left(\sqrt{1-x}\right)^{2}
Expand \left(5\sqrt{1-x}\right)^{2}.
x^{2}+2x+1=25\left(\sqrt{1-x}\right)^{2}
Calculate 5 to the power of 2 and get 25.
x^{2}+2x+1=25\left(1-x\right)
Calculate \sqrt{1-x} to the power of 2 and get 1-x.
x^{2}+2x+1=25-25x
Use the distributive property to multiply 25 by 1-x.
x^{2}+2x+1-25=-25x
Subtract 25 from both sides.
x^{2}+2x-24=-25x
Subtract 25 from 1 to get -24.
x^{2}+2x-24+25x=0
Add 25x to both sides.
x^{2}+27x-24=0
Combine 2x and 25x to get 27x.
x=\frac{-27±\sqrt{27^{2}-4\left(-24\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 27 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-24\right)}}{2}
Square 27.
x=\frac{-27±\sqrt{729+96}}{2}
Multiply -4 times -24.
x=\frac{-27±\sqrt{825}}{2}
Add 729 to 96.
x=\frac{-27±5\sqrt{33}}{2}
Take the square root of 825.
x=\frac{5\sqrt{33}-27}{2}
Now solve the equation x=\frac{-27±5\sqrt{33}}{2} when ± is plus. Add -27 to 5\sqrt{33}.
x=\frac{-5\sqrt{33}-27}{2}
Now solve the equation x=\frac{-27±5\sqrt{33}}{2} when ± is minus. Subtract 5\sqrt{33} from -27.
x=\frac{5\sqrt{33}-27}{2} x=\frac{-5\sqrt{33}-27}{2}
The equation is now solved.
\frac{5\sqrt{33}-27}{2}=5\sqrt{1-\frac{5\sqrt{33}-27}{2}}-1
Substitute \frac{5\sqrt{33}-27}{2} for x in the equation x=5\sqrt{1-x}-1.
\frac{5}{2}\times 33^{\frac{1}{2}}-\frac{27}{2}=-\frac{27}{2}+\frac{5}{2}\times 33^{\frac{1}{2}}
Simplify. The value x=\frac{5\sqrt{33}-27}{2} satisfies the equation.
\frac{-5\sqrt{33}-27}{2}=5\sqrt{1-\frac{-5\sqrt{33}-27}{2}}-1
Substitute \frac{-5\sqrt{33}-27}{2} for x in the equation x=5\sqrt{1-x}-1.
-\frac{5}{2}\times 33^{\frac{1}{2}}-\frac{27}{2}=\frac{23}{2}+\frac{5}{2}\times 33^{\frac{1}{2}}
Simplify. The value x=\frac{-5\sqrt{33}-27}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{5\sqrt{33}-27}{2}
Equation x+1=5\sqrt{1-x} has a unique solution.