Solve for x
x=\frac{5\sqrt{33}-27}{2}\approx 0.861406616
Graph
Share
Copied to clipboard
x+1=5\sqrt{1-x}
Subtract -1 from both sides of the equation.
\left(x+1\right)^{2}=\left(5\sqrt{1-x}\right)^{2}
Square both sides of the equation.
x^{2}+2x+1=\left(5\sqrt{1-x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1=5^{2}\left(\sqrt{1-x}\right)^{2}
Expand \left(5\sqrt{1-x}\right)^{2}.
x^{2}+2x+1=25\left(\sqrt{1-x}\right)^{2}
Calculate 5 to the power of 2 and get 25.
x^{2}+2x+1=25\left(1-x\right)
Calculate \sqrt{1-x} to the power of 2 and get 1-x.
x^{2}+2x+1=25-25x
Use the distributive property to multiply 25 by 1-x.
x^{2}+2x+1-25=-25x
Subtract 25 from both sides.
x^{2}+2x-24=-25x
Subtract 25 from 1 to get -24.
x^{2}+2x-24+25x=0
Add 25x to both sides.
x^{2}+27x-24=0
Combine 2x and 25x to get 27x.
x=\frac{-27±\sqrt{27^{2}-4\left(-24\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 27 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-24\right)}}{2}
Square 27.
x=\frac{-27±\sqrt{729+96}}{2}
Multiply -4 times -24.
x=\frac{-27±\sqrt{825}}{2}
Add 729 to 96.
x=\frac{-27±5\sqrt{33}}{2}
Take the square root of 825.
x=\frac{5\sqrt{33}-27}{2}
Now solve the equation x=\frac{-27±5\sqrt{33}}{2} when ± is plus. Add -27 to 5\sqrt{33}.
x=\frac{-5\sqrt{33}-27}{2}
Now solve the equation x=\frac{-27±5\sqrt{33}}{2} when ± is minus. Subtract 5\sqrt{33} from -27.
x=\frac{5\sqrt{33}-27}{2} x=\frac{-5\sqrt{33}-27}{2}
The equation is now solved.
\frac{5\sqrt{33}-27}{2}=5\sqrt{1-\frac{5\sqrt{33}-27}{2}}-1
Substitute \frac{5\sqrt{33}-27}{2} for x in the equation x=5\sqrt{1-x}-1.
\frac{5}{2}\times 33^{\frac{1}{2}}-\frac{27}{2}=-\frac{27}{2}+\frac{5}{2}\times 33^{\frac{1}{2}}
Simplify. The value x=\frac{5\sqrt{33}-27}{2} satisfies the equation.
\frac{-5\sqrt{33}-27}{2}=5\sqrt{1-\frac{-5\sqrt{33}-27}{2}}-1
Substitute \frac{-5\sqrt{33}-27}{2} for x in the equation x=5\sqrt{1-x}-1.
-\frac{5}{2}\times 33^{\frac{1}{2}}-\frac{27}{2}=\frac{23}{2}+\frac{5}{2}\times 33^{\frac{1}{2}}
Simplify. The value x=\frac{-5\sqrt{33}-27}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{5\sqrt{33}-27}{2}
Equation x+1=5\sqrt{1-x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}