Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{2+2b-x}{b-3}\text{, }&b\neq 3\\a\in \mathrm{C}\text{, }&x=8\text{ and }b=3\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{2-3a-x}{a+2}\text{, }&a\neq -2\\b\in \mathrm{C}\text{, }&x=8\text{ and }a=-2\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{2+2b-x}{b-3}\text{, }&b\neq 3\\a\in \mathrm{R}\text{, }&x=8\text{ and }b=3\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{2-3a-x}{a+2}\text{, }&a\neq -2\\b\in \mathrm{R}\text{, }&x=8\text{ and }a=-2\end{matrix}\right.
Graph
Share
Copied to clipboard
x=-3a+2b+ab+2
Combine 4a and -7a to get -3a.
-3a+2b+ab+2=x
Swap sides so that all variable terms are on the left hand side.
-3a+ab+2=x-2b
Subtract 2b from both sides.
-3a+ab=x-2b-2
Subtract 2 from both sides.
\left(-3+b\right)a=x-2b-2
Combine all terms containing a.
\left(b-3\right)a=x-2b-2
The equation is in standard form.
\frac{\left(b-3\right)a}{b-3}=\frac{x-2b-2}{b-3}
Divide both sides by -3+b.
a=\frac{x-2b-2}{b-3}
Dividing by -3+b undoes the multiplication by -3+b.
x=-3a+2b+ab+2
Combine 4a and -7a to get -3a.
-3a+2b+ab+2=x
Swap sides so that all variable terms are on the left hand side.
2b+ab+2=x+3a
Add 3a to both sides.
2b+ab=x+3a-2
Subtract 2 from both sides.
\left(2+a\right)b=x+3a-2
Combine all terms containing b.
\left(a+2\right)b=x+3a-2
The equation is in standard form.
\frac{\left(a+2\right)b}{a+2}=\frac{x+3a-2}{a+2}
Divide both sides by 2+a.
b=\frac{x+3a-2}{a+2}
Dividing by 2+a undoes the multiplication by 2+a.
x=-3a+2b+ab+2
Combine 4a and -7a to get -3a.
-3a+2b+ab+2=x
Swap sides so that all variable terms are on the left hand side.
-3a+ab+2=x-2b
Subtract 2b from both sides.
-3a+ab=x-2b-2
Subtract 2 from both sides.
\left(-3+b\right)a=x-2b-2
Combine all terms containing a.
\left(b-3\right)a=x-2b-2
The equation is in standard form.
\frac{\left(b-3\right)a}{b-3}=\frac{x-2b-2}{b-3}
Divide both sides by -3+b.
a=\frac{x-2b-2}{b-3}
Dividing by -3+b undoes the multiplication by -3+b.
x=-3a+2b+ab+2
Combine 4a and -7a to get -3a.
-3a+2b+ab+2=x
Swap sides so that all variable terms are on the left hand side.
2b+ab+2=x+3a
Add 3a to both sides.
2b+ab=x+3a-2
Subtract 2 from both sides.
\left(2+a\right)b=x+3a-2
Combine all terms containing b.
\left(a+2\right)b=x+3a-2
The equation is in standard form.
\frac{\left(a+2\right)b}{a+2}=\frac{x+3a-2}{a+2}
Divide both sides by 2+a.
b=\frac{x+3a-2}{a+2}
Dividing by 2+a undoes the multiplication by 2+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}