Solve for x
x=7
x=5
Graph
Share
Copied to clipboard
x-4=\sqrt{4x-19}
Subtract 4 from both sides of the equation.
\left(x-4\right)^{2}=\left(\sqrt{4x-19}\right)^{2}
Square both sides of the equation.
x^{2}-8x+16=\left(\sqrt{4x-19}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16=4x-19
Calculate \sqrt{4x-19} to the power of 2 and get 4x-19.
x^{2}-8x+16-4x=-19
Subtract 4x from both sides.
x^{2}-12x+16=-19
Combine -8x and -4x to get -12x.
x^{2}-12x+16+19=0
Add 19 to both sides.
x^{2}-12x+35=0
Add 16 and 19 to get 35.
a+b=-12 ab=35
To solve the equation, factor x^{2}-12x+35 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-35 -5,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 35.
-1-35=-36 -5-7=-12
Calculate the sum for each pair.
a=-7 b=-5
The solution is the pair that gives sum -12.
\left(x-7\right)\left(x-5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=7 x=5
To find equation solutions, solve x-7=0 and x-5=0.
7=4+\sqrt{4\times 7-19}
Substitute 7 for x in the equation x=4+\sqrt{4x-19}.
7=7
Simplify. The value x=7 satisfies the equation.
5=4+\sqrt{4\times 5-19}
Substitute 5 for x in the equation x=4+\sqrt{4x-19}.
5=5
Simplify. The value x=5 satisfies the equation.
x=7 x=5
List all solutions of x-4=\sqrt{4x-19}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}