Solve for m (complex solution)
\left\{\begin{matrix}m=-3x-\frac{n}{x}+1\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&n=0\text{ and }x=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-3x-\frac{n}{x}+1\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&n=0\text{ and }x=0\end{matrix}\right.
Solve for n
n=-x\left(3x+m-1\right)
Graph
Share
Copied to clipboard
3x^{2}+mx+n=x
Swap sides so that all variable terms are on the left hand side.
mx+n=x-3x^{2}
Subtract 3x^{2} from both sides.
mx=x-3x^{2}-n
Subtract n from both sides.
xm=-3x^{2}+x-n
The equation is in standard form.
\frac{xm}{x}=\frac{-3x^{2}+x-n}{x}
Divide both sides by x.
m=\frac{-3x^{2}+x-n}{x}
Dividing by x undoes the multiplication by x.
m=-3x-\frac{n}{x}+1
Divide x-3x^{2}-n by x.
3x^{2}+mx+n=x
Swap sides so that all variable terms are on the left hand side.
mx+n=x-3x^{2}
Subtract 3x^{2} from both sides.
mx=x-3x^{2}-n
Subtract n from both sides.
xm=-3x^{2}+x-n
The equation is in standard form.
\frac{xm}{x}=\frac{-3x^{2}+x-n}{x}
Divide both sides by x.
m=\frac{-3x^{2}+x-n}{x}
Dividing by x undoes the multiplication by x.
m=-3x-\frac{n}{x}+1
Divide x-3x^{2}-n by x.
3x^{2}+mx+n=x
Swap sides so that all variable terms are on the left hand side.
mx+n=x-3x^{2}
Subtract 3x^{2} from both sides.
n=x-3x^{2}-mx
Subtract mx from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}