Solve for x
x=\frac{\sqrt{3844801}+2401}{320000}\approx 0.013630676
x=\frac{2401-\sqrt{3844801}}{320000}\approx 0.001375574
Graph
Share
Copied to clipboard
x-3=-2400x+160000x^{2}
Subtract 3 from both sides.
x-3+2400x=160000x^{2}
Add 2400x to both sides.
2401x-3=160000x^{2}
Combine x and 2400x to get 2401x.
2401x-3-160000x^{2}=0
Subtract 160000x^{2} from both sides.
-160000x^{2}+2401x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2401±\sqrt{2401^{2}-4\left(-160000\right)\left(-3\right)}}{2\left(-160000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -160000 for a, 2401 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2401±\sqrt{5764801-4\left(-160000\right)\left(-3\right)}}{2\left(-160000\right)}
Square 2401.
x=\frac{-2401±\sqrt{5764801+640000\left(-3\right)}}{2\left(-160000\right)}
Multiply -4 times -160000.
x=\frac{-2401±\sqrt{5764801-1920000}}{2\left(-160000\right)}
Multiply 640000 times -3.
x=\frac{-2401±\sqrt{3844801}}{2\left(-160000\right)}
Add 5764801 to -1920000.
x=\frac{-2401±\sqrt{3844801}}{-320000}
Multiply 2 times -160000.
x=\frac{\sqrt{3844801}-2401}{-320000}
Now solve the equation x=\frac{-2401±\sqrt{3844801}}{-320000} when ± is plus. Add -2401 to \sqrt{3844801}.
x=\frac{2401-\sqrt{3844801}}{320000}
Divide -2401+\sqrt{3844801} by -320000.
x=\frac{-\sqrt{3844801}-2401}{-320000}
Now solve the equation x=\frac{-2401±\sqrt{3844801}}{-320000} when ± is minus. Subtract \sqrt{3844801} from -2401.
x=\frac{\sqrt{3844801}+2401}{320000}
Divide -2401-\sqrt{3844801} by -320000.
x=\frac{2401-\sqrt{3844801}}{320000} x=\frac{\sqrt{3844801}+2401}{320000}
The equation is now solved.
x+2400x=3+160000x^{2}
Add 2400x to both sides.
2401x=3+160000x^{2}
Combine x and 2400x to get 2401x.
2401x-160000x^{2}=3
Subtract 160000x^{2} from both sides.
-160000x^{2}+2401x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-160000x^{2}+2401x}{-160000}=\frac{3}{-160000}
Divide both sides by -160000.
x^{2}+\frac{2401}{-160000}x=\frac{3}{-160000}
Dividing by -160000 undoes the multiplication by -160000.
x^{2}-\frac{2401}{160000}x=\frac{3}{-160000}
Divide 2401 by -160000.
x^{2}-\frac{2401}{160000}x=-\frac{3}{160000}
Divide 3 by -160000.
x^{2}-\frac{2401}{160000}x+\left(-\frac{2401}{320000}\right)^{2}=-\frac{3}{160000}+\left(-\frac{2401}{320000}\right)^{2}
Divide -\frac{2401}{160000}, the coefficient of the x term, by 2 to get -\frac{2401}{320000}. Then add the square of -\frac{2401}{320000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2401}{160000}x+\frac{5764801}{102400000000}=-\frac{3}{160000}+\frac{5764801}{102400000000}
Square -\frac{2401}{320000} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2401}{160000}x+\frac{5764801}{102400000000}=\frac{3844801}{102400000000}
Add -\frac{3}{160000} to \frac{5764801}{102400000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2401}{320000}\right)^{2}=\frac{3844801}{102400000000}
Factor x^{2}-\frac{2401}{160000}x+\frac{5764801}{102400000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2401}{320000}\right)^{2}}=\sqrt{\frac{3844801}{102400000000}}
Take the square root of both sides of the equation.
x-\frac{2401}{320000}=\frac{\sqrt{3844801}}{320000} x-\frac{2401}{320000}=-\frac{\sqrt{3844801}}{320000}
Simplify.
x=\frac{\sqrt{3844801}+2401}{320000} x=\frac{2401-\sqrt{3844801}}{320000}
Add \frac{2401}{320000} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}