Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=3\left(x^{2}+10x+25\right)-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x=3x^{2}+30x+75-4
Use the distributive property to multiply 3 by x^{2}+10x+25.
x=3x^{2}+30x+71
Subtract 4 from 75 to get 71.
x-3x^{2}=30x+71
Subtract 3x^{2} from both sides.
x-3x^{2}-30x=71
Subtract 30x from both sides.
-29x-3x^{2}=71
Combine x and -30x to get -29x.
-29x-3x^{2}-71=0
Subtract 71 from both sides.
-3x^{2}-29x-71=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\left(-3\right)\left(-71\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -29 for b, and -71 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\left(-3\right)\left(-71\right)}}{2\left(-3\right)}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841+12\left(-71\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-29\right)±\sqrt{841-852}}{2\left(-3\right)}
Multiply 12 times -71.
x=\frac{-\left(-29\right)±\sqrt{-11}}{2\left(-3\right)}
Add 841 to -852.
x=\frac{-\left(-29\right)±\sqrt{11}i}{2\left(-3\right)}
Take the square root of -11.
x=\frac{29±\sqrt{11}i}{2\left(-3\right)}
The opposite of -29 is 29.
x=\frac{29±\sqrt{11}i}{-6}
Multiply 2 times -3.
x=\frac{29+\sqrt{11}i}{-6}
Now solve the equation x=\frac{29±\sqrt{11}i}{-6} when ± is plus. Add 29 to i\sqrt{11}.
x=\frac{-\sqrt{11}i-29}{6}
Divide 29+i\sqrt{11} by -6.
x=\frac{-\sqrt{11}i+29}{-6}
Now solve the equation x=\frac{29±\sqrt{11}i}{-6} when ± is minus. Subtract i\sqrt{11} from 29.
x=\frac{-29+\sqrt{11}i}{6}
Divide 29-i\sqrt{11} by -6.
x=\frac{-\sqrt{11}i-29}{6} x=\frac{-29+\sqrt{11}i}{6}
The equation is now solved.
x=3\left(x^{2}+10x+25\right)-4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x=3x^{2}+30x+75-4
Use the distributive property to multiply 3 by x^{2}+10x+25.
x=3x^{2}+30x+71
Subtract 4 from 75 to get 71.
x-3x^{2}=30x+71
Subtract 3x^{2} from both sides.
x-3x^{2}-30x=71
Subtract 30x from both sides.
-29x-3x^{2}=71
Combine x and -30x to get -29x.
-3x^{2}-29x=71
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-29x}{-3}=\frac{71}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{29}{-3}\right)x=\frac{71}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{29}{3}x=\frac{71}{-3}
Divide -29 by -3.
x^{2}+\frac{29}{3}x=-\frac{71}{3}
Divide 71 by -3.
x^{2}+\frac{29}{3}x+\left(\frac{29}{6}\right)^{2}=-\frac{71}{3}+\left(\frac{29}{6}\right)^{2}
Divide \frac{29}{3}, the coefficient of the x term, by 2 to get \frac{29}{6}. Then add the square of \frac{29}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{29}{3}x+\frac{841}{36}=-\frac{71}{3}+\frac{841}{36}
Square \frac{29}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{29}{3}x+\frac{841}{36}=-\frac{11}{36}
Add -\frac{71}{3} to \frac{841}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{29}{6}\right)^{2}=-\frac{11}{36}
Factor x^{2}+\frac{29}{3}x+\frac{841}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{29}{6}\right)^{2}}=\sqrt{-\frac{11}{36}}
Take the square root of both sides of the equation.
x+\frac{29}{6}=\frac{\sqrt{11}i}{6} x+\frac{29}{6}=-\frac{\sqrt{11}i}{6}
Simplify.
x=\frac{-29+\sqrt{11}i}{6} x=\frac{-\sqrt{11}i-29}{6}
Subtract \frac{29}{6} from both sides of the equation.