Solve for x
x=3
Graph
Share
Copied to clipboard
x-3=\sqrt{x^{2}-9}
Subtract 3 from both sides of the equation.
\left(x-3\right)^{2}=\left(\sqrt{x^{2}-9}\right)^{2}
Square both sides of the equation.
x^{2}-6x+9=\left(\sqrt{x^{2}-9}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=x^{2}-9
Calculate \sqrt{x^{2}-9} to the power of 2 and get x^{2}-9.
x^{2}-6x+9-x^{2}=-9
Subtract x^{2} from both sides.
-6x+9=-9
Combine x^{2} and -x^{2} to get 0.
-6x=-9-9
Subtract 9 from both sides.
-6x=-18
Subtract 9 from -9 to get -18.
x=\frac{-18}{-6}
Divide both sides by -6.
x=3
Divide -18 by -6 to get 3.
3=3+\sqrt{3^{2}-9}
Substitute 3 for x in the equation x=3+\sqrt{x^{2}-9}.
3=3
Simplify. The value x=3 satisfies the equation.
x=3
Equation x-3=\sqrt{x^{2}-9} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}