Solve for x
x = \frac{2350}{19} = 123\frac{13}{19} \approx 123.684210526
Graph
Share
Copied to clipboard
x=110+\frac{0.1}{2}\left(150+x\right)
Subtract 150 from 260 to get 110.
x=110+\frac{1}{20}\left(150+x\right)
Expand \frac{0.1}{2} by multiplying both numerator and the denominator by 10.
x=110+\frac{1}{20}\times 150+\frac{1}{20}x
Use the distributive property to multiply \frac{1}{20} by 150+x.
x=110+\frac{150}{20}+\frac{1}{20}x
Multiply \frac{1}{20} and 150 to get \frac{150}{20}.
x=110+\frac{15}{2}+\frac{1}{20}x
Reduce the fraction \frac{150}{20} to lowest terms by extracting and canceling out 10.
x=\frac{220}{2}+\frac{15}{2}+\frac{1}{20}x
Convert 110 to fraction \frac{220}{2}.
x=\frac{220+15}{2}+\frac{1}{20}x
Since \frac{220}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
x=\frac{235}{2}+\frac{1}{20}x
Add 220 and 15 to get 235.
x-\frac{1}{20}x=\frac{235}{2}
Subtract \frac{1}{20}x from both sides.
\frac{19}{20}x=\frac{235}{2}
Combine x and -\frac{1}{20}x to get \frac{19}{20}x.
x=\frac{235}{2}\times \frac{20}{19}
Multiply both sides by \frac{20}{19}, the reciprocal of \frac{19}{20}.
x=\frac{235\times 20}{2\times 19}
Multiply \frac{235}{2} times \frac{20}{19} by multiplying numerator times numerator and denominator times denominator.
x=\frac{4700}{38}
Do the multiplications in the fraction \frac{235\times 20}{2\times 19}.
x=\frac{2350}{19}
Reduce the fraction \frac{4700}{38} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}