Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=2\left(1-\frac{1}{2}x\right)^{2}
Divide 2x by 4 to get \frac{1}{2}x.
x=2\left(1+2\left(-\frac{1}{2}x\right)+\left(-\frac{1}{2}x\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1-\frac{1}{2}x\right)^{2}.
x=2\left(1+2\left(-\frac{1}{2}x\right)+\left(\frac{1}{2}x\right)^{2}\right)
Calculate -\frac{1}{2}x to the power of 2 and get \left(\frac{1}{2}x\right)^{2}.
x=2\left(1+2\left(-\frac{1}{2}x\right)+\left(\frac{1}{2}\right)^{2}x^{2}\right)
Expand \left(\frac{1}{2}x\right)^{2}.
x=2\left(1+2\left(-\frac{1}{2}x\right)+\frac{1}{4}x^{2}\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
x=2+4\left(-\frac{1}{2}x\right)+\frac{1}{2}x^{2}
Use the distributive property to multiply 2 by 1+2\left(-\frac{1}{2}x\right)+\frac{1}{4}x^{2}.
x-2=4\left(-\frac{1}{2}x\right)+\frac{1}{2}x^{2}
Subtract 2 from both sides.
x-2-4\left(-\frac{1}{2}x\right)=\frac{1}{2}x^{2}
Subtract 4\left(-\frac{1}{2}x\right) from both sides.
x-2-4\left(-\frac{1}{2}x\right)-\frac{1}{2}x^{2}=0
Subtract \frac{1}{2}x^{2} from both sides.
x-2-4\left(-1\right)\times \frac{1}{2}x-\frac{1}{2}x^{2}=0
Multiply -1 and 4 to get -4.
x-2+4\times \frac{1}{2}x-\frac{1}{2}x^{2}=0
Multiply -4 and -1 to get 4.
x-2+2x-\frac{1}{2}x^{2}=0
Multiply 4 and \frac{1}{2} to get 2.
3x-2-\frac{1}{2}x^{2}=0
Combine x and 2x to get 3x.
-\frac{1}{2}x^{2}+3x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-\frac{1}{2}\right)\left(-2\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-\frac{1}{2}\right)\left(-2\right)}}{2\left(-\frac{1}{2}\right)}
Square 3.
x=\frac{-3±\sqrt{9+2\left(-2\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-3±\sqrt{9-4}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -2.
x=\frac{-3±\sqrt{5}}{2\left(-\frac{1}{2}\right)}
Add 9 to -4.
x=\frac{-3±\sqrt{5}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{5}-3}{-1}
Now solve the equation x=\frac{-3±\sqrt{5}}{-1} when ± is plus. Add -3 to \sqrt{5}.
x=3-\sqrt{5}
Divide -3+\sqrt{5} by -1.
x=\frac{-\sqrt{5}-3}{-1}
Now solve the equation x=\frac{-3±\sqrt{5}}{-1} when ± is minus. Subtract \sqrt{5} from -3.
x=\sqrt{5}+3
Divide -3-\sqrt{5} by -1.
x=3-\sqrt{5} x=\sqrt{5}+3
The equation is now solved.
x=2\left(1-\frac{1}{2}x\right)^{2}
Divide 2x by 4 to get \frac{1}{2}x.
x=2\left(1+2\left(-\frac{1}{2}x\right)+\left(-\frac{1}{2}x\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1-\frac{1}{2}x\right)^{2}.
x=2\left(1+2\left(-\frac{1}{2}x\right)+\left(\frac{1}{2}x\right)^{2}\right)
Calculate -\frac{1}{2}x to the power of 2 and get \left(\frac{1}{2}x\right)^{2}.
x=2\left(1+2\left(-\frac{1}{2}x\right)+\left(\frac{1}{2}\right)^{2}x^{2}\right)
Expand \left(\frac{1}{2}x\right)^{2}.
x=2\left(1+2\left(-\frac{1}{2}x\right)+\frac{1}{4}x^{2}\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
x=2+4\left(-\frac{1}{2}x\right)+\frac{1}{2}x^{2}
Use the distributive property to multiply 2 by 1+2\left(-\frac{1}{2}x\right)+\frac{1}{4}x^{2}.
x-4\left(-\frac{1}{2}x\right)=2+\frac{1}{2}x^{2}
Subtract 4\left(-\frac{1}{2}x\right) from both sides.
x-4\left(-\frac{1}{2}x\right)-\frac{1}{2}x^{2}=2
Subtract \frac{1}{2}x^{2} from both sides.
x-4\left(-1\right)\times \frac{1}{2}x-\frac{1}{2}x^{2}=2
Multiply -1 and 4 to get -4.
x+4\times \frac{1}{2}x-\frac{1}{2}x^{2}=2
Multiply -4 and -1 to get 4.
x+2x-\frac{1}{2}x^{2}=2
Multiply 4 and \frac{1}{2} to get 2.
3x-\frac{1}{2}x^{2}=2
Combine x and 2x to get 3x.
-\frac{1}{2}x^{2}+3x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+3x}{-\frac{1}{2}}=\frac{2}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{3}{-\frac{1}{2}}x=\frac{2}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-6x=\frac{2}{-\frac{1}{2}}
Divide 3 by -\frac{1}{2} by multiplying 3 by the reciprocal of -\frac{1}{2}.
x^{2}-6x=-4
Divide 2 by -\frac{1}{2} by multiplying 2 by the reciprocal of -\frac{1}{2}.
x^{2}-6x+\left(-3\right)^{2}=-4+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-4+9
Square -3.
x^{2}-6x+9=5
Add -4 to 9.
\left(x-3\right)^{2}=5
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x-3=\sqrt{5} x-3=-\sqrt{5}
Simplify.
x=\sqrt{5}+3 x=3-\sqrt{5}
Add 3 to both sides of the equation.