Solve for x
x=10
Graph
Share
Copied to clipboard
x^{2}=\left(2\sqrt{x+15}\right)^{2}
Square both sides of the equation.
x^{2}=2^{2}\left(\sqrt{x+15}\right)^{2}
Expand \left(2\sqrt{x+15}\right)^{2}.
x^{2}=4\left(\sqrt{x+15}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}=4\left(x+15\right)
Calculate \sqrt{x+15} to the power of 2 and get x+15.
x^{2}=4x+60
Use the distributive property to multiply 4 by x+15.
x^{2}-4x=60
Subtract 4x from both sides.
x^{2}-4x-60=0
Subtract 60 from both sides.
a+b=-4 ab=-60
To solve the equation, factor x^{2}-4x-60 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=-10 b=6
The solution is the pair that gives sum -4.
\left(x-10\right)\left(x+6\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=10 x=-6
To find equation solutions, solve x-10=0 and x+6=0.
10=2\sqrt{10+15}
Substitute 10 for x in the equation x=2\sqrt{x+15}.
10=10
Simplify. The value x=10 satisfies the equation.
-6=2\sqrt{-6+15}
Substitute -6 for x in the equation x=2\sqrt{x+15}.
-6=6
Simplify. The value x=-6 does not satisfy the equation because the left and the right hand side have opposite signs.
x=10
Equation x=2\sqrt{x+15} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}