Solve for x (complex solution)
x=-\frac{1+i\sqrt{-\left(1-80\pi \right)}}{20\pi }\approx -0.015915494-0.251810791i
x=-\frac{-i\sqrt{-\left(1-80\pi \right)}+1}{20\pi }\approx -0.015915494+0.251810791i
Graph
Share
Copied to clipboard
x=10\pi x^{2}+2x+2
Multiply 2 and 5 to get 10.
x-10\pi x^{2}=2x+2
Subtract 10\pi x^{2} from both sides.
x-10\pi x^{2}-2x=2
Subtract 2x from both sides.
x-10\pi x^{2}-2x-2=0
Subtract 2 from both sides.
-x-10\pi x^{2}-2=0
Combine x and -2x to get -x.
\left(-10\pi \right)x^{2}-x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-10\pi \right)\left(-2\right)}}{2\left(-10\pi \right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10\pi for a, -1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+40\pi \left(-2\right)}}{2\left(-10\pi \right)}
Multiply -4 times -10\pi .
x=\frac{-\left(-1\right)±\sqrt{1-80\pi }}{2\left(-10\pi \right)}
Multiply 40\pi times -2.
x=\frac{-\left(-1\right)±i\sqrt{-\left(1-80\pi \right)}}{2\left(-10\pi \right)}
Take the square root of 1-80\pi .
x=\frac{1±i\sqrt{-\left(1-80\pi \right)}}{2\left(-10\pi \right)}
The opposite of -1 is 1.
x=\frac{1±i\sqrt{-\left(1-80\pi \right)}}{-20\pi }
Multiply 2 times -10\pi .
x=\frac{1+i\sqrt{80\pi -1}}{-20\pi }
Now solve the equation x=\frac{1±i\sqrt{-\left(1-80\pi \right)}}{-20\pi } when ± is plus. Add 1 to i\sqrt{-\left(1-80\pi \right)}.
x=-\frac{1+i\sqrt{80\pi -1}}{20\pi }
Divide 1+i\sqrt{-1+80\pi } by -20\pi .
x=\frac{-i\sqrt{80\pi -1}+1}{-20\pi }
Now solve the equation x=\frac{1±i\sqrt{-\left(1-80\pi \right)}}{-20\pi } when ± is minus. Subtract i\sqrt{-\left(1-80\pi \right)} from 1.
x=-\frac{-i\sqrt{80\pi -1}+1}{20\pi }
Divide 1-i\sqrt{-1+80\pi } by -20\pi .
x=-\frac{1+i\sqrt{80\pi -1}}{20\pi } x=-\frac{-i\sqrt{80\pi -1}+1}{20\pi }
The equation is now solved.
x=10\pi x^{2}+2x+2
Multiply 2 and 5 to get 10.
x-10\pi x^{2}=2x+2
Subtract 10\pi x^{2} from both sides.
x-10\pi x^{2}-2x=2
Subtract 2x from both sides.
-x-10\pi x^{2}=2
Combine x and -2x to get -x.
\left(-10\pi \right)x^{2}-x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\left(-10\pi \right)x^{2}-x}{-10\pi }=\frac{2}{-10\pi }
Divide both sides by -10\pi .
x^{2}+\left(-\frac{1}{-10\pi }\right)x=\frac{2}{-10\pi }
Dividing by -10\pi undoes the multiplication by -10\pi .
x^{2}+\frac{1}{10\pi }x=\frac{2}{-10\pi }
Divide -1 by -10\pi .
x^{2}+\frac{1}{10\pi }x=-\frac{1}{5\pi }
Divide 2 by -10\pi .
x^{2}+\frac{1}{10\pi }x+\left(\frac{1}{20\pi }\right)^{2}=-\frac{1}{5\pi }+\left(\frac{1}{20\pi }\right)^{2}
Divide \frac{1}{10\pi }, the coefficient of the x term, by 2 to get \frac{1}{20\pi }. Then add the square of \frac{1}{20\pi } to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{10\pi }x+\frac{1}{400\pi ^{2}}=-\frac{1}{5\pi }+\frac{1}{400\pi ^{2}}
Square \frac{1}{20\pi }.
x^{2}+\frac{1}{10\pi }x+\frac{1}{400\pi ^{2}}=\frac{-\frac{\pi }{5}+\frac{1}{400}}{\pi ^{2}}
Add -\frac{1}{5\pi } to \frac{1}{400\pi ^{2}}.
\left(x+\frac{1}{20\pi }\right)^{2}=\frac{-\frac{\pi }{5}+\frac{1}{400}}{\pi ^{2}}
Factor x^{2}+\frac{1}{10\pi }x+\frac{1}{400\pi ^{2}}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{20\pi }\right)^{2}}=\sqrt{\frac{-\frac{\pi }{5}+\frac{1}{400}}{\pi ^{2}}}
Take the square root of both sides of the equation.
x+\frac{1}{20\pi }=\frac{i\sqrt{-\left(1-80\pi \right)}}{20\pi } x+\frac{1}{20\pi }=-\frac{i\sqrt{80\pi -1}}{20\pi }
Simplify.
x=\frac{-1+i\sqrt{-\left(1-80\pi \right)}}{20\pi } x=-\frac{1+i\sqrt{80\pi -1}}{20\pi }
Subtract \frac{1}{20\pi } from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}