Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=10\pi x^{2}+2x+2
Multiply 2 and 5 to get 10.
x-10\pi x^{2}=2x+2
Subtract 10\pi x^{2} from both sides.
x-10\pi x^{2}-2x=2
Subtract 2x from both sides.
x-10\pi x^{2}-2x-2=0
Subtract 2 from both sides.
-x-10\pi x^{2}-2=0
Combine x and -2x to get -x.
\left(-10\pi \right)x^{2}-x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-10\pi \right)\left(-2\right)}}{2\left(-10\pi \right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10\pi for a, -1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+40\pi \left(-2\right)}}{2\left(-10\pi \right)}
Multiply -4 times -10\pi .
x=\frac{-\left(-1\right)±\sqrt{1-80\pi }}{2\left(-10\pi \right)}
Multiply 40\pi times -2.
x=\frac{-\left(-1\right)±i\sqrt{-\left(1-80\pi \right)}}{2\left(-10\pi \right)}
Take the square root of 1-80\pi .
x=\frac{1±i\sqrt{-\left(1-80\pi \right)}}{2\left(-10\pi \right)}
The opposite of -1 is 1.
x=\frac{1±i\sqrt{-\left(1-80\pi \right)}}{-20\pi }
Multiply 2 times -10\pi .
x=\frac{1+i\sqrt{80\pi -1}}{-20\pi }
Now solve the equation x=\frac{1±i\sqrt{-\left(1-80\pi \right)}}{-20\pi } when ± is plus. Add 1 to i\sqrt{-\left(1-80\pi \right)}.
x=-\frac{1+i\sqrt{80\pi -1}}{20\pi }
Divide 1+i\sqrt{-1+80\pi } by -20\pi .
x=\frac{-i\sqrt{80\pi -1}+1}{-20\pi }
Now solve the equation x=\frac{1±i\sqrt{-\left(1-80\pi \right)}}{-20\pi } when ± is minus. Subtract i\sqrt{-\left(1-80\pi \right)} from 1.
x=-\frac{-i\sqrt{80\pi -1}+1}{20\pi }
Divide 1-i\sqrt{-1+80\pi } by -20\pi .
x=-\frac{1+i\sqrt{80\pi -1}}{20\pi } x=-\frac{-i\sqrt{80\pi -1}+1}{20\pi }
The equation is now solved.
x=10\pi x^{2}+2x+2
Multiply 2 and 5 to get 10.
x-10\pi x^{2}=2x+2
Subtract 10\pi x^{2} from both sides.
x-10\pi x^{2}-2x=2
Subtract 2x from both sides.
-x-10\pi x^{2}=2
Combine x and -2x to get -x.
\left(-10\pi \right)x^{2}-x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\left(-10\pi \right)x^{2}-x}{-10\pi }=\frac{2}{-10\pi }
Divide both sides by -10\pi .
x^{2}+\left(-\frac{1}{-10\pi }\right)x=\frac{2}{-10\pi }
Dividing by -10\pi undoes the multiplication by -10\pi .
x^{2}+\frac{1}{10\pi }x=\frac{2}{-10\pi }
Divide -1 by -10\pi .
x^{2}+\frac{1}{10\pi }x=-\frac{1}{5\pi }
Divide 2 by -10\pi .
x^{2}+\frac{1}{10\pi }x+\left(\frac{1}{20\pi }\right)^{2}=-\frac{1}{5\pi }+\left(\frac{1}{20\pi }\right)^{2}
Divide \frac{1}{10\pi }, the coefficient of the x term, by 2 to get \frac{1}{20\pi }. Then add the square of \frac{1}{20\pi } to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{10\pi }x+\frac{1}{400\pi ^{2}}=-\frac{1}{5\pi }+\frac{1}{400\pi ^{2}}
Square \frac{1}{20\pi }.
x^{2}+\frac{1}{10\pi }x+\frac{1}{400\pi ^{2}}=\frac{-\frac{\pi }{5}+\frac{1}{400}}{\pi ^{2}}
Add -\frac{1}{5\pi } to \frac{1}{400\pi ^{2}}.
\left(x+\frac{1}{20\pi }\right)^{2}=\frac{-\frac{\pi }{5}+\frac{1}{400}}{\pi ^{2}}
Factor x^{2}+\frac{1}{10\pi }x+\frac{1}{400\pi ^{2}}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{20\pi }\right)^{2}}=\sqrt{\frac{-\frac{\pi }{5}+\frac{1}{400}}{\pi ^{2}}}
Take the square root of both sides of the equation.
x+\frac{1}{20\pi }=\frac{i\sqrt{-\left(1-80\pi \right)}}{20\pi } x+\frac{1}{20\pi }=-\frac{i\sqrt{80\pi -1}}{20\pi }
Simplify.
x=\frac{-1+i\sqrt{-\left(1-80\pi \right)}}{20\pi } x=-\frac{1+i\sqrt{80\pi -1}}{20\pi }
Subtract \frac{1}{20\pi } from both sides of the equation.