Solve for n
n=\frac{5x-33}{2}
Solve for x
x=\frac{2n+33}{5}
Graph
Share
Copied to clipboard
0.4n+6.6=x
Swap sides so that all variable terms are on the left hand side.
0.4n=x-6.6
Subtract 6.6 from both sides.
\frac{0.4n}{0.4}=\frac{x-6.6}{0.4}
Divide both sides of the equation by 0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
n=\frac{x-6.6}{0.4}
Dividing by 0.4 undoes the multiplication by 0.4.
n=\frac{5x-33}{2}
Divide x-6.6 by 0.4 by multiplying x-6.6 by the reciprocal of 0.4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}