Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+16x^{2}=75x+200
Add 16x^{2} to both sides.
x+16x^{2}-75x=200
Subtract 75x from both sides.
-74x+16x^{2}=200
Combine x and -75x to get -74x.
-74x+16x^{2}-200=0
Subtract 200 from both sides.
16x^{2}-74x-200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-74\right)±\sqrt{\left(-74\right)^{2}-4\times 16\left(-200\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -74 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-74\right)±\sqrt{5476-4\times 16\left(-200\right)}}{2\times 16}
Square -74.
x=\frac{-\left(-74\right)±\sqrt{5476-64\left(-200\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-74\right)±\sqrt{5476+12800}}{2\times 16}
Multiply -64 times -200.
x=\frac{-\left(-74\right)±\sqrt{18276}}{2\times 16}
Add 5476 to 12800.
x=\frac{-\left(-74\right)±2\sqrt{4569}}{2\times 16}
Take the square root of 18276.
x=\frac{74±2\sqrt{4569}}{2\times 16}
The opposite of -74 is 74.
x=\frac{74±2\sqrt{4569}}{32}
Multiply 2 times 16.
x=\frac{2\sqrt{4569}+74}{32}
Now solve the equation x=\frac{74±2\sqrt{4569}}{32} when ± is plus. Add 74 to 2\sqrt{4569}.
x=\frac{\sqrt{4569}+37}{16}
Divide 74+2\sqrt{4569} by 32.
x=\frac{74-2\sqrt{4569}}{32}
Now solve the equation x=\frac{74±2\sqrt{4569}}{32} when ± is minus. Subtract 2\sqrt{4569} from 74.
x=\frac{37-\sqrt{4569}}{16}
Divide 74-2\sqrt{4569} by 32.
x=\frac{\sqrt{4569}+37}{16} x=\frac{37-\sqrt{4569}}{16}
The equation is now solved.
x+16x^{2}=75x+200
Add 16x^{2} to both sides.
x+16x^{2}-75x=200
Subtract 75x from both sides.
-74x+16x^{2}=200
Combine x and -75x to get -74x.
16x^{2}-74x=200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16x^{2}-74x}{16}=\frac{200}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{74}{16}\right)x=\frac{200}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{37}{8}x=\frac{200}{16}
Reduce the fraction \frac{-74}{16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{37}{8}x=\frac{25}{2}
Reduce the fraction \frac{200}{16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{37}{8}x+\left(-\frac{37}{16}\right)^{2}=\frac{25}{2}+\left(-\frac{37}{16}\right)^{2}
Divide -\frac{37}{8}, the coefficient of the x term, by 2 to get -\frac{37}{16}. Then add the square of -\frac{37}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{37}{8}x+\frac{1369}{256}=\frac{25}{2}+\frac{1369}{256}
Square -\frac{37}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{37}{8}x+\frac{1369}{256}=\frac{4569}{256}
Add \frac{25}{2} to \frac{1369}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{37}{16}\right)^{2}=\frac{4569}{256}
Factor x^{2}-\frac{37}{8}x+\frac{1369}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{16}\right)^{2}}=\sqrt{\frac{4569}{256}}
Take the square root of both sides of the equation.
x-\frac{37}{16}=\frac{\sqrt{4569}}{16} x-\frac{37}{16}=-\frac{\sqrt{4569}}{16}
Simplify.
x=\frac{\sqrt{4569}+37}{16} x=\frac{37-\sqrt{4569}}{16}
Add \frac{37}{16} to both sides of the equation.