Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=-\frac{12x+\sqrt{12x^{2}-20x+4}}{2}
Use the distributive property to multiply -4 by 5x-1.
x+\frac{12x+\sqrt{12x^{2}-20x+4}}{2}=0
Add \frac{12x+\sqrt{12x^{2}-20x+4}}{2} to both sides.
2x+12x+\sqrt{12x^{2}-20x+4}=0
Multiply both sides of the equation by 2.
\sqrt{12x^{2}-20x+4}+2x+12x=0
Reorder the terms.
\sqrt{12x^{2}-20x+4}+14x=0
Combine 2x and 12x to get 14x.
\sqrt{12x^{2}-20x+4}=-14x
Subtract 14x from both sides of the equation.
\left(\sqrt{12x^{2}-20x+4}\right)^{2}=\left(-14x\right)^{2}
Square both sides of the equation.
12x^{2}-20x+4=\left(-14x\right)^{2}
Calculate \sqrt{12x^{2}-20x+4} to the power of 2 and get 12x^{2}-20x+4.
12x^{2}-20x+4=\left(-14\right)^{2}x^{2}
Expand \left(-14x\right)^{2}.
12x^{2}-20x+4=196x^{2}
Calculate -14 to the power of 2 and get 196.
12x^{2}-20x+4-196x^{2}=0
Subtract 196x^{2} from both sides.
-184x^{2}-20x+4=0
Combine 12x^{2} and -196x^{2} to get -184x^{2}.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-184\right)\times 4}}{2\left(-184\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -184 for a, -20 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-184\right)\times 4}}{2\left(-184\right)}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400+736\times 4}}{2\left(-184\right)}
Multiply -4 times -184.
x=\frac{-\left(-20\right)±\sqrt{400+2944}}{2\left(-184\right)}
Multiply 736 times 4.
x=\frac{-\left(-20\right)±\sqrt{3344}}{2\left(-184\right)}
Add 400 to 2944.
x=\frac{-\left(-20\right)±4\sqrt{209}}{2\left(-184\right)}
Take the square root of 3344.
x=\frac{20±4\sqrt{209}}{2\left(-184\right)}
The opposite of -20 is 20.
x=\frac{20±4\sqrt{209}}{-368}
Multiply 2 times -184.
x=\frac{4\sqrt{209}+20}{-368}
Now solve the equation x=\frac{20±4\sqrt{209}}{-368} when ± is plus. Add 20 to 4\sqrt{209}.
x=\frac{-\sqrt{209}-5}{92}
Divide 20+4\sqrt{209} by -368.
x=\frac{20-4\sqrt{209}}{-368}
Now solve the equation x=\frac{20±4\sqrt{209}}{-368} when ± is minus. Subtract 4\sqrt{209} from 20.
x=\frac{\sqrt{209}-5}{92}
Divide 20-4\sqrt{209} by -368.
x=\frac{-\sqrt{209}-5}{92} x=\frac{\sqrt{209}-5}{92}
The equation is now solved.
\frac{-\sqrt{209}-5}{92}=-\frac{12\times \frac{-\sqrt{209}-5}{92}+\sqrt{12\times \left(\frac{-\sqrt{209}-5}{92}\right)^{2}-4\left(5\times \frac{-\sqrt{209}-5}{92}-1\right)}}{2}
Substitute \frac{-\sqrt{209}-5}{92} for x in the equation x=-\frac{12x+\sqrt{12x^{2}-4\left(5x-1\right)}}{2}.
-\frac{1}{92}\times 209^{\frac{1}{2}}-\frac{5}{92}=-\frac{1}{92}\times 209^{\frac{1}{2}}-\frac{5}{92}
Simplify. The value x=\frac{-\sqrt{209}-5}{92} satisfies the equation.
\frac{\sqrt{209}-5}{92}=-\frac{12\times \frac{\sqrt{209}-5}{92}+\sqrt{12\times \left(\frac{\sqrt{209}-5}{92}\right)^{2}-4\left(5\times \frac{\sqrt{209}-5}{92}-1\right)}}{2}
Substitute \frac{\sqrt{209}-5}{92} for x in the equation x=-\frac{12x+\sqrt{12x^{2}-4\left(5x-1\right)}}{2}.
\frac{1}{92}\times 209^{\frac{1}{2}}-\frac{5}{92}=-\frac{13}{92}\times 209^{\frac{1}{2}}+\frac{65}{92}
Simplify. The value x=\frac{\sqrt{209}-5}{92} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{-\sqrt{209}-5}{92}
Equation \sqrt{12x^{2}-20x+4}=-14x has a unique solution.