Solve for x
x = \frac{2 \sqrt{105}}{15} \approx 1.366260102
x = -\frac{2 \sqrt{105}}{15} \approx -1.366260102
Graph
Share
Copied to clipboard
x=15x^{2}+x-28
Use the distributive property to multiply 5x+7 by 3x-4 and combine like terms.
x-15x^{2}=x-28
Subtract 15x^{2} from both sides.
x-15x^{2}-x=-28
Subtract x from both sides.
-15x^{2}=-28
Combine x and -x to get 0.
x^{2}=\frac{-28}{-15}
Divide both sides by -15.
x^{2}=\frac{28}{15}
Fraction \frac{-28}{-15} can be simplified to \frac{28}{15} by removing the negative sign from both the numerator and the denominator.
x=\frac{2\sqrt{105}}{15} x=-\frac{2\sqrt{105}}{15}
Take the square root of both sides of the equation.
x=15x^{2}+x-28
Use the distributive property to multiply 5x+7 by 3x-4 and combine like terms.
x-15x^{2}=x-28
Subtract 15x^{2} from both sides.
x-15x^{2}-x=-28
Subtract x from both sides.
-15x^{2}=-28
Combine x and -x to get 0.
-15x^{2}+28=0
Add 28 to both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-15\right)\times 28}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 0 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-15\right)\times 28}}{2\left(-15\right)}
Square 0.
x=\frac{0±\sqrt{60\times 28}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{0±\sqrt{1680}}{2\left(-15\right)}
Multiply 60 times 28.
x=\frac{0±4\sqrt{105}}{2\left(-15\right)}
Take the square root of 1680.
x=\frac{0±4\sqrt{105}}{-30}
Multiply 2 times -15.
x=-\frac{2\sqrt{105}}{15}
Now solve the equation x=\frac{0±4\sqrt{105}}{-30} when ± is plus.
x=\frac{2\sqrt{105}}{15}
Now solve the equation x=\frac{0±4\sqrt{105}}{-30} when ± is minus.
x=-\frac{2\sqrt{105}}{15} x=\frac{2\sqrt{105}}{15}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}