Skip to main content
Solve for y
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{1}{2}y+\frac{1}{2}z
Divide each term of 3y+3z by 6 to get \frac{1}{2}y+\frac{1}{2}z.
\frac{1}{2}y+\frac{1}{2}z=x
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}y=x-\frac{1}{2}z
Subtract \frac{1}{2}z from both sides.
\frac{1}{2}y=-\frac{z}{2}+x
The equation is in standard form.
\frac{\frac{1}{2}y}{\frac{1}{2}}=\frac{-\frac{z}{2}+x}{\frac{1}{2}}
Multiply both sides by 2.
y=\frac{-\frac{z}{2}+x}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
y=2x-z
Divide x-\frac{z}{2} by \frac{1}{2} by multiplying x-\frac{z}{2} by the reciprocal of \frac{1}{2}.
x=\frac{1}{2}y+\frac{1}{2}z
Divide each term of 3y+3z by 6 to get \frac{1}{2}y+\frac{1}{2}z.