Solve for x (complex solution)
x=\frac{-\sqrt{3}i-1}{2}\approx -0.5-0.866025404i
x=1
Solve for x
x=1
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{x}\times \frac{1}{x}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\frac{\sqrt{x}}{x}\right)^{2}
Express \sqrt{x}\times \frac{1}{x} as a single fraction.
x^{2}=\frac{\left(\sqrt{x}\right)^{2}}{x^{2}}
To raise \frac{\sqrt{x}}{x} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{x}{x^{2}}
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}=\frac{1}{x}
Cancel out x in both numerator and denominator.
xx^{2}=1
Multiply both sides of the equation by x.
x^{3}=1
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
x^{3}-1=0
Subtract 1 from both sides.
±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+x+1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-1 by x-1 to get x^{2}+x+1. Solve the equation where the result equals to 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and 1 for c in the quadratic formula.
x=\frac{-1±\sqrt{-3}}{2}
Do the calculations.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Solve the equation x^{2}+x+1=0 when ± is plus and when ± is minus.
x=1 x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
List all found solutions.
1=\sqrt{1}\times \frac{1}{1}
Substitute 1 for x in the equation x=\sqrt{x}\times \frac{1}{x}.
1=1
Simplify. The value x=1 satisfies the equation.
\frac{-\sqrt{3}i-1}{2}=\sqrt{\frac{-\sqrt{3}i-1}{2}}\times \frac{1}{\frac{-\sqrt{3}i-1}{2}}
Substitute \frac{-\sqrt{3}i-1}{2} for x in the equation x=\sqrt{x}\times \frac{1}{x}.
-\frac{1}{2}i\times 3^{\frac{1}{2}}-\frac{1}{2}=-\frac{1}{2}-\frac{1}{2}i\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{-\sqrt{3}i-1}{2} satisfies the equation.
\frac{-1+\sqrt{3}i}{2}=\sqrt{\frac{-1+\sqrt{3}i}{2}}\times \frac{1}{\frac{-1+\sqrt{3}i}{2}}
Substitute \frac{-1+\sqrt{3}i}{2} for x in the equation x=\sqrt{x}\times \frac{1}{x}.
-\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}=\frac{1}{2}-\frac{1}{2}i\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{-1+\sqrt{3}i}{2} does not satisfy the equation.
x=1 x=\frac{-\sqrt{3}i-1}{2}
List all solutions of x=\frac{1}{x}\sqrt{x}.
x^{2}=\left(\sqrt{x}\times \frac{1}{x}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\frac{\sqrt{x}}{x}\right)^{2}
Express \sqrt{x}\times \frac{1}{x} as a single fraction.
x^{2}=\frac{\left(\sqrt{x}\right)^{2}}{x^{2}}
To raise \frac{\sqrt{x}}{x} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=\frac{x}{x^{2}}
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}=\frac{1}{x}
Cancel out x in both numerator and denominator.
xx^{2}=1
Multiply both sides of the equation by x.
x^{3}=1
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
x^{3}-1=0
Subtract 1 from both sides.
±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+x+1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-1 by x-1 to get x^{2}+x+1. Solve the equation where the result equals to 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and 1 for c in the quadratic formula.
x=\frac{-1±\sqrt{-3}}{2}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=1
List all found solutions.
1=\sqrt{1}\times \frac{1}{1}
Substitute 1 for x in the equation x=\sqrt{x}\times \frac{1}{x}.
1=1
Simplify. The value x=1 satisfies the equation.
x=1
Equation x=\frac{1}{x}\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}