Solve for x
x=7
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{x^{2}+3x-21}\right)^{2}
Square both sides of the equation.
x^{2}=x^{2}+3x-21
Calculate \sqrt{x^{2}+3x-21} to the power of 2 and get x^{2}+3x-21.
x^{2}-x^{2}=3x-21
Subtract x^{2} from both sides.
0=3x-21
Combine x^{2} and -x^{2} to get 0.
3x-21=0
Swap sides so that all variable terms are on the left hand side.
3x=21
Add 21 to both sides. Anything plus zero gives itself.
x=\frac{21}{3}
Divide both sides by 3.
x=7
Divide 21 by 3 to get 7.
7=\sqrt{7^{2}+3\times 7-21}
Substitute 7 for x in the equation x=\sqrt{x^{2}+3x-21}.
7=7
Simplify. The value x=7 satisfies the equation.
x=7
Equation x=\sqrt{x^{2}+3x-21} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}