Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-3=\sqrt{6x-26}
Subtract 3 from both sides of the equation.
\left(x-3\right)^{2}=\left(\sqrt{6x-26}\right)^{2}
Square both sides of the equation.
x^{2}-6x+9=\left(\sqrt{6x-26}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=6x-26
Calculate \sqrt{6x-26} to the power of 2 and get 6x-26.
x^{2}-6x+9-6x=-26
Subtract 6x from both sides.
x^{2}-12x+9=-26
Combine -6x and -6x to get -12x.
x^{2}-12x+9+26=0
Add 26 to both sides.
x^{2}-12x+35=0
Add 9 and 26 to get 35.
a+b=-12 ab=35
To solve the equation, factor x^{2}-12x+35 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-35 -5,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 35.
-1-35=-36 -5-7=-12
Calculate the sum for each pair.
a=-7 b=-5
The solution is the pair that gives sum -12.
\left(x-7\right)\left(x-5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=7 x=5
To find equation solutions, solve x-7=0 and x-5=0.
7=\sqrt{6\times 7-26}+3
Substitute 7 for x in the equation x=\sqrt{6x-26}+3.
7=7
Simplify. The value x=7 satisfies the equation.
5=\sqrt{6\times 5-26}+3
Substitute 5 for x in the equation x=\sqrt{6x-26}+3.
5=5
Simplify. The value x=5 satisfies the equation.
x=7 x=5
List all solutions of x-3=\sqrt{6x-26}.