Solve for x
x=\sqrt{2}\approx 1.414213562
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{4-x^{2}}\right)^{2}
Square both sides of the equation.
x^{2}=4-x^{2}
Calculate \sqrt{4-x^{2}} to the power of 2 and get 4-x^{2}.
x^{2}+x^{2}=4
Add x^{2} to both sides.
2x^{2}=4
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}=\frac{4}{2}
Divide both sides by 2.
x^{2}=2
Divide 4 by 2 to get 2.
x=\sqrt{2} x=-\sqrt{2}
Take the square root of both sides of the equation.
\sqrt{2}=\sqrt{4-\left(\sqrt{2}\right)^{2}}
Substitute \sqrt{2} for x in the equation x=\sqrt{4-x^{2}}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=\sqrt{2} satisfies the equation.
-\sqrt{2}=\sqrt{4-\left(-\sqrt{2}\right)^{2}}
Substitute -\sqrt{2} for x in the equation x=\sqrt{4-x^{2}}.
-2^{\frac{1}{2}}=2^{\frac{1}{2}}
Simplify. The value x=-\sqrt{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\sqrt{2}
Equation x=\sqrt{4-x^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}