Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{4^{2}+\left(8x\right)^{2}}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\sqrt{16+\left(8x\right)^{2}}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}=\left(\sqrt{16+8^{2}x^{2}}\right)^{2}
Expand \left(8x\right)^{2}.
x^{2}=\left(\sqrt{16+64x^{2}}\right)^{2}
Calculate 8 to the power of 2 and get 64.
x^{2}=16+64x^{2}
Calculate \sqrt{16+64x^{2}} to the power of 2 and get 16+64x^{2}.
x^{2}-64x^{2}=16
Subtract 64x^{2} from both sides.
-63x^{2}=16
Combine x^{2} and -64x^{2} to get -63x^{2}.
x^{2}=-\frac{16}{63}
Divide both sides by -63.
x=\frac{4\sqrt{7}i}{21} x=-\frac{4\sqrt{7}i}{21}
The equation is now solved.
\frac{4\sqrt{7}i}{21}=\sqrt{4^{2}+\left(8\times \frac{4\sqrt{7}i}{21}\right)^{2}}
Substitute \frac{4\sqrt{7}i}{21} for x in the equation x=\sqrt{4^{2}+\left(8x\right)^{2}}.
\frac{4}{21}i\times 7^{\frac{1}{2}}=\frac{4}{21}i\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{4\sqrt{7}i}{21} satisfies the equation.
-\frac{4\sqrt{7}i}{21}=\sqrt{4^{2}+\left(8\left(-\frac{4\sqrt{7}i}{21}\right)\right)^{2}}
Substitute -\frac{4\sqrt{7}i}{21} for x in the equation x=\sqrt{4^{2}+\left(8x\right)^{2}}.
-\frac{4}{21}i\times 7^{\frac{1}{2}}=\frac{4}{21}i\times 7^{\frac{1}{2}}
Simplify. The value x=-\frac{4\sqrt{7}i}{21} does not satisfy the equation.
x=\frac{4\sqrt{7}i}{21}
Equation x=\sqrt{\left(8x\right)^{2}+16} has a unique solution.