Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{2x-9}\right)^{2}
Square both sides of the equation.
x^{2}=2x-9
Calculate \sqrt{2x-9} to the power of 2 and get 2x-9.
x^{2}-2x=-9
Subtract 2x from both sides.
x^{2}-2x+9=0
Add 9 to both sides.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 9}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-36}}{2}
Multiply -4 times 9.
x=\frac{-\left(-2\right)±\sqrt{-32}}{2}
Add 4 to -36.
x=\frac{-\left(-2\right)±4\sqrt{2}i}{2}
Take the square root of -32.
x=\frac{2±4\sqrt{2}i}{2}
The opposite of -2 is 2.
x=\frac{2+4\sqrt{2}i}{2}
Now solve the equation x=\frac{2±4\sqrt{2}i}{2} when ± is plus. Add 2 to 4i\sqrt{2}.
x=1+2\sqrt{2}i
Divide 2+4i\sqrt{2} by 2.
x=\frac{-4\sqrt{2}i+2}{2}
Now solve the equation x=\frac{2±4\sqrt{2}i}{2} when ± is minus. Subtract 4i\sqrt{2} from 2.
x=-2\sqrt{2}i+1
Divide 2-4i\sqrt{2} by 2.
x=1+2\sqrt{2}i x=-2\sqrt{2}i+1
The equation is now solved.
1+2\sqrt{2}i=\sqrt{2\left(1+2\sqrt{2}i\right)-9}
Substitute 1+2\sqrt{2}i for x in the equation x=\sqrt{2x-9}.
1+2i\times 2^{\frac{1}{2}}=1+2i\times 2^{\frac{1}{2}}
Simplify. The value x=1+2\sqrt{2}i satisfies the equation.
-2\sqrt{2}i+1=\sqrt{2\left(-2\sqrt{2}i+1\right)-9}
Substitute -2\sqrt{2}i+1 for x in the equation x=\sqrt{2x-9}.
-2i\times 2^{\frac{1}{2}}+1=-\left(1-2i\times 2^{\frac{1}{2}}\right)
Simplify. The value x=-2\sqrt{2}i+1 does not satisfy the equation.
x=1+2\sqrt{2}i
Equation x=\sqrt{2x-9} has a unique solution.